【LLM教程】为什么做大语言模型fine tuning时,要将 drop_last_batch设置为True?

目录

[1. drop_last_batch 是什么?](#1. drop_last_batch 是什么?)

[2. drop_last_batch有什么用?](#2. drop_last_batch有什么用?)


这是我们做tokenizer时,经常会遇到的代码,那这里的drop_last_batch 为什么要设置:

finetuning_dataset_loaded = datasets.load_dataset("json", data_files=filename, split="train")

tokenized_dataset = finetuning_dataset_loaded.map(
    tokenize_function,
    batched=True,
    batch_size=1,
    drop_last_batch=True
)

print(tokenized_dataset)

1. drop_last_batch 是什么?

drop_last_batch=True 是一个常见的数据加载/预处理选项,用于在处理最后一批样本时丢弃不完整的批次(batch)。

2. drop_last_batch有什么用?

  • 训练神经网络模型:

    大多数神经网络模型在训练时使用批量梯度下降(mini-batch gradient descent)优化算法,这需要将数据分成若干个批次。如果最后一个批次的样本数量不足一个完整批次的大小,可能会导致计算不一致或效率低下。通过设置 drop_last_batch=True,可以确保每个批次的大小都是一致的,有利于模型的稳定性和收敛性。

  • 数据并行处理:

    在数据并行处理的场景下,例如使用多个GPU或多个进程/线程进行数据预处理,需要保证每个处理单元获得的数据批次大小相同,以平衡计算负载。丢弃最后一个不完整的批次可以确保数据的均匀分布。

  • 统一批次大小:

    某些操作(如数据增强、数据编码等)可能需要固定的批次大小,以便有效地利用向量化计算或内存缓存。在这种情况下,丢弃最后一个不完整的批次可以确保批次大小的一致性。

  • 模型并行处理:

    在模型并行处理的场景下,多个模型组件可能需要接收相同大小的批次输入,以确保同步和一致性。丢弃最后一个不完整的批次可以实现这一点。

相关推荐
数据分析能量站29 分钟前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%35 分钟前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
szxinmai主板定制专家1 小时前
【NI国产替代】基于国产FPGA+全志T3的全国产16振动+2转速(24bits)高精度终端采集板卡
人工智能·fpga开发
YangJZ_ByteMaster1 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
Anlici1 小时前
模型训练与数据分析
人工智能·机器学习
余~~185381628001 小时前
NFC 碰一碰发视频源码搭建技术详解,支持OEM
开发语言·人工智能·python·音视频
唔皇万睡万万睡2 小时前
五子棋小游戏设计(Matlab)
人工智能·matlab·游戏程序
视觉语言导航2 小时前
AAAI-2024 | 大语言模型赋能导航决策!NavGPT:基于大模型显式推理的视觉语言导航
人工智能·具身智能
volcanical2 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert
知来者逆2 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型