1、案例二:使用Pandas库进行进行机器学习建模步骤【Python人工智能】

在人工智能和机器学习项目中,数据处理是一个至关重要的环节。Pandas是Python中一个强大的数据处理库,它提供了高效、灵活的数据结构和数据分析工具。下面是一个使用Pandas库进行数据处理的例子,涉及数据清洗、特征工程和基本的统计分析。

示例:泰坦尼克号乘客生存预测

在这个例子中,我们使用著名的泰坦尼克号乘客数据集。我们的目标是通过数据处理和特征工程,为机器学习模型预测乘客是否能生存提供清洗后的数据。

1. 导入必要的库
python 复制代码
import pandas as pd
import numpy as np
2. 加载数据
python 复制代码
# 读取CSV文件到Pandas DataFrame
df = pd.read_csv('titanic.csv')
  1. 数据预览
python 复制代码
# 显示数据前几行
print(df.head())

# 查看数据的基本信息
print(df.info())

# 查看数据统计信息
print(df.describe())
4. 数据清洗
  1. 处理缺失值

    python 复制代码
    # 查看每列的缺失值
    print(df.isnull().sum())
    
    # 填充缺失的年龄(使用中位数)
    df['Age'].fillna(df['Age'].median(), inplace=True)
    
    # 填充缺失的登船港口(使用最常见的值)
    df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
    
    # 舍弃包含大量缺失值的列(如客舱号)
    df.drop(columns=['Cabin'], inplace=True)
  2. 转换分类变量为数值型

    python 复制代码
    # 使用Pandas的get_dummies方法进行独热编码
    df = pd.get_dummies(df, columns=['Sex', 'Embarked'], drop_first=True)
    5. 特征工程
创建新的特征
python 复制代码
# 创建家庭成员总数特征
df['FamilySize'] = df['SibSp'] + df['Parch'] + 1

# 创建是否独自一人旅行特征
df['IsAlone'] = (df['FamilySize'] == 1).astype(int)
  • 特征选择

    python 复制代码
    # 选择有用的特征进行建模
    features = ['Pclass', 'Age', 'Fare', 'FamilySize', 'IsAlone', 'Sex_male', 'Embarked_Q', 'Embarked_S']
    X = df[features]
    y = df['Survived']
    6. 数据标准化
    python 复制代码
    from sklearn.preprocessing import StandardScaler
    
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    7. 简单的统计分析
    python 复制代码
    # 计算各类乘客的生存率
    survival_rate = df.groupby('Pclass')['Survived'].mean()
    print(survival_rate)
    
    # 查看不同性别的生存率
    gender_survival_rate = df.groupby('Sex_male')['Survived'].mean()
    print(gender_survival_rate)
    8. 准备训练模型

    我们已经完成了数据清洗和特征工程,现在可以使用处理后的数据进行机器学习模型的训练。例如,使用逻辑回归模型:

    python 复制代码
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    
    # 分割数据集为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 初始化和训练逻辑回归模型
    model = LogisticRegression()
    model.fit(X_train, y_train)
    
    # 预测和评估模型
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f'模型准确率: {accuracy:.2f}')

    结论

    通过这个例子,我们展示了如何使用Pandas库进行数据加载、清洗、特征工程和简单的统计分析。这些步骤是进行机器学习建模的基础,能够帮助我们准备高质量的数据,为模型提供可靠的输入。

相关推荐
湫ccc4 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤7 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭10 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~10 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
lzhlizihang13 分钟前
python如何使用spark操作hive
hive·python·spark
q0_0p14 分钟前
牛客小白月赛105 (Python题解) A~E
python·牛客
极客代码17 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113317 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike18 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇19 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow