1、案例二:使用Pandas库进行进行机器学习建模步骤【Python人工智能】

在人工智能和机器学习项目中,数据处理是一个至关重要的环节。Pandas是Python中一个强大的数据处理库,它提供了高效、灵活的数据结构和数据分析工具。下面是一个使用Pandas库进行数据处理的例子,涉及数据清洗、特征工程和基本的统计分析。

示例:泰坦尼克号乘客生存预测

在这个例子中,我们使用著名的泰坦尼克号乘客数据集。我们的目标是通过数据处理和特征工程,为机器学习模型预测乘客是否能生存提供清洗后的数据。

1. 导入必要的库
python 复制代码
import pandas as pd
import numpy as np
2. 加载数据
python 复制代码
# 读取CSV文件到Pandas DataFrame
df = pd.read_csv('titanic.csv')
  1. 数据预览
python 复制代码
# 显示数据前几行
print(df.head())

# 查看数据的基本信息
print(df.info())

# 查看数据统计信息
print(df.describe())
4. 数据清洗
  1. 处理缺失值

    python 复制代码
    # 查看每列的缺失值
    print(df.isnull().sum())
    
    # 填充缺失的年龄(使用中位数)
    df['Age'].fillna(df['Age'].median(), inplace=True)
    
    # 填充缺失的登船港口(使用最常见的值)
    df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
    
    # 舍弃包含大量缺失值的列(如客舱号)
    df.drop(columns=['Cabin'], inplace=True)
  2. 转换分类变量为数值型

    python 复制代码
    # 使用Pandas的get_dummies方法进行独热编码
    df = pd.get_dummies(df, columns=['Sex', 'Embarked'], drop_first=True)
    5. 特征工程
创建新的特征
python 复制代码
# 创建家庭成员总数特征
df['FamilySize'] = df['SibSp'] + df['Parch'] + 1

# 创建是否独自一人旅行特征
df['IsAlone'] = (df['FamilySize'] == 1).astype(int)
  • 特征选择

    python 复制代码
    # 选择有用的特征进行建模
    features = ['Pclass', 'Age', 'Fare', 'FamilySize', 'IsAlone', 'Sex_male', 'Embarked_Q', 'Embarked_S']
    X = df[features]
    y = df['Survived']
    6. 数据标准化
    python 复制代码
    from sklearn.preprocessing import StandardScaler
    
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    7. 简单的统计分析
    python 复制代码
    # 计算各类乘客的生存率
    survival_rate = df.groupby('Pclass')['Survived'].mean()
    print(survival_rate)
    
    # 查看不同性别的生存率
    gender_survival_rate = df.groupby('Sex_male')['Survived'].mean()
    print(gender_survival_rate)
    8. 准备训练模型

    我们已经完成了数据清洗和特征工程,现在可以使用处理后的数据进行机器学习模型的训练。例如,使用逻辑回归模型:

    python 复制代码
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    
    # 分割数据集为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 初始化和训练逻辑回归模型
    model = LogisticRegression()
    model.fit(X_train, y_train)
    
    # 预测和评估模型
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f'模型准确率: {accuracy:.2f}')

    结论

    通过这个例子,我们展示了如何使用Pandas库进行数据加载、清洗、特征工程和简单的统计分析。这些步骤是进行机器学习建模的基础,能够帮助我们准备高质量的数据,为模型提供可靠的输入。

相关推荐
chenzhiyuan20181 分钟前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1438 分钟前
51c深度学习~合集11
人工智能
Tiandaren16 分钟前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
卖个几把萌18 分钟前
【16】Selenium+Python 接管已打开谷歌浏览器
python·selenium·测试工具
像风一样的男人@41 分钟前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
领航猿1号1 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
lllsure1 小时前
【Python】Dict(字典)
开发语言·python
综合热讯1 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl1 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
tianyuanwo2 小时前
Rust开发完全指南:从入门到与Python高效融合
开发语言·python·rust