如何用matplotlib绘制图像分类任务的类别特征空间分布

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D

# 加载示例数据(Iris 数据集)
data = load_iris()
X = data.data
y = data.target
categories = data.target_names

# 使用PCA将数据降维到二维
pca_2d = PCA(n_components=2)
X_reduced_2d = pca_2d.fit_transform(X)

# 绘制二维特征空间分布
plt.figure(figsize=(10, 8))
for i, category in enumerate(categories):
    plt.scatter(X_reduced_2d[y == i, 0], X_reduced_2d[y == i, 1], label=category)
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.title('类别特征空间分布(二维)')
plt.legend()
plt.savefig('2d_feature_space.png')
plt.show()

# 使用PCA将数据降维到三维
pca_3d = PCA(n_components=3)
X_reduced_3d = pca_3d.fit_transform(X)

# 绘制三维特征空间分布
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
for i, category in enumerate(categories):
    ax.scatter(X_reduced_3d[y == i, 0], X_reduced_3d[y == i, 1], X_reduced_3d[y == i, 2], label=category)
ax.set_xlabel('PCA 1')
ax.set_ylabel('PCA 2')
ax.set_zlabel('PCA 3')
ax.set_title('类别特征空间分布(三维)')
ax.legend()
plt.savefig('3d_feature_space.png')
plt.show()
相关推荐
实时数据6 小时前
一手资料结合大数据分析挖掘海量信息中的价值了解用户真实需求 实现精准营销
数据挖掘·数据分析
龙腾AI白云6 小时前
面向开放世界的具身智能泛化能力探索
数据挖掘
B站_计算机毕业设计之家8 小时前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts
lusasky9 小时前
海事监管数据挖掘技术栈
人工智能·数据挖掘
啊阿狸不会拉杆9 小时前
《机器学习导论》第 7 章-聚类
数据结构·人工智能·python·算法·机器学习·数据挖掘·聚类
酷酷的崽79819 小时前
CANN 开源生态实战:端到端构建高效文本分类服务
分类·数据挖掘·开源
2501_943695331 天前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
是小蟹呀^1 天前
从稀疏到自适应:人脸识别中稀疏表示的核心演进
人工智能·分类
pchaoda1 天前
RSI与布林带技术指标实战
python·matplotlib·量化