如何用matplotlib绘制图像分类任务的类别特征空间分布

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D

# 加载示例数据(Iris 数据集)
data = load_iris()
X = data.data
y = data.target
categories = data.target_names

# 使用PCA将数据降维到二维
pca_2d = PCA(n_components=2)
X_reduced_2d = pca_2d.fit_transform(X)

# 绘制二维特征空间分布
plt.figure(figsize=(10, 8))
for i, category in enumerate(categories):
    plt.scatter(X_reduced_2d[y == i, 0], X_reduced_2d[y == i, 1], label=category)
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.title('类别特征空间分布(二维)')
plt.legend()
plt.savefig('2d_feature_space.png')
plt.show()

# 使用PCA将数据降维到三维
pca_3d = PCA(n_components=3)
X_reduced_3d = pca_3d.fit_transform(X)

# 绘制三维特征空间分布
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
for i, category in enumerate(categories):
    ax.scatter(X_reduced_3d[y == i, 0], X_reduced_3d[y == i, 1], X_reduced_3d[y == i, 2], label=category)
ax.set_xlabel('PCA 1')
ax.set_ylabel('PCA 2')
ax.set_zlabel('PCA 3')
ax.set_title('类别特征空间分布(三维)')
ax.legend()
plt.savefig('3d_feature_space.png')
plt.show()
相关推荐
蹦蹦跳跳真可爱58940 分钟前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
搞机小能手8 小时前
六个能够白嫖学习资料的网站
笔记·学习·分类
Olafur_zbj9 小时前
【EDA】EDA中聚类(Clustering)和划分(Partitioning)
机器学习·数据挖掘·聚类
生信碱移13 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
量子-Alex14 小时前
【遥感图像分类】【综述】遥感影像分类:全面综述与应用
人工智能·分类·数据挖掘
qq_4369621819 小时前
AI数据分析的利器:解锁BI工具的无限潜力
人工智能·数据挖掘·数据分析·ai数据分析
lilye6621 小时前
精益数据分析(24/126):聚焦第一关键指标,驱动创业成功
数据挖掘·数据分析
YiSLWLL1 天前
使用Tauri 2.3.1+Leptos 0.7.8开发桌面小程序汇总
python·rust·sqlite·matplotlib·visual studio code
云天徽上1 天前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
用户199701080181 天前
深入解析淘宝商品详情 API 接口:功能、使用与实践指南
大数据·爬虫·数据挖掘