如何用matplotlib绘制图像分类任务的类别特征空间分布

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D

# 加载示例数据(Iris 数据集)
data = load_iris()
X = data.data
y = data.target
categories = data.target_names

# 使用PCA将数据降维到二维
pca_2d = PCA(n_components=2)
X_reduced_2d = pca_2d.fit_transform(X)

# 绘制二维特征空间分布
plt.figure(figsize=(10, 8))
for i, category in enumerate(categories):
    plt.scatter(X_reduced_2d[y == i, 0], X_reduced_2d[y == i, 1], label=category)
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.title('类别特征空间分布(二维)')
plt.legend()
plt.savefig('2d_feature_space.png')
plt.show()

# 使用PCA将数据降维到三维
pca_3d = PCA(n_components=3)
X_reduced_3d = pca_3d.fit_transform(X)

# 绘制三维特征空间分布
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
for i, category in enumerate(categories):
    ax.scatter(X_reduced_3d[y == i, 0], X_reduced_3d[y == i, 1], X_reduced_3d[y == i, 2], label=category)
ax.set_xlabel('PCA 1')
ax.set_ylabel('PCA 2')
ax.set_zlabel('PCA 3')
ax.set_title('类别特征空间分布(三维)')
ax.legend()
plt.savefig('3d_feature_space.png')
plt.show()
相关推荐
Katecat996631 天前
夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1
分类·r语言·cnn
OOOaaa1231231 天前
电子电路板元器件识别与分类_yolov8-fasternet-bifpn实现方案_1
yolo·数据挖掘
adaAS14143152 天前
YOLO11-ReCalibrationFPN-P345实现酒液品牌识别与分类_1
人工智能·分类·数据挖掘
罗小罗同学2 天前
基于虚拟染色的病理切片进行癌症分类,准确率可达到95.9%,在统计学上逼近真实染色的金标准,两小时可处理100张切片
人工智能·分类·数据挖掘·医学图像处理·医学人工智能
L.fountain2 天前
图像自回归生成(Auto-regressive image generation)实战学习(二)
学习·数据挖掘·回归
狮智先生2 天前
【编程实践】Windows + PySide6 + Matplotlib 绘图时 WinError 32 的完整排查与解决方案
windows·ui·个人开发·matplotlib·交通物流
桓峰基因2 天前
SCS 60.单细胞空间转录组空间聚类(SPATA2)
人工智能·算法·机器学习·数据挖掘·聚类
元让_vincent2 天前
论文Review 3DGS综述 | 南京大学 | 3DGS Survey, Technologies Challenges and Opportunities |(二)扩展、模块增强、其他技术讨论挑战
人工智能·数据挖掘·综述·3dgs
Katecat996632 天前
背胶条分类识别:基于计算机视觉的修复状态差异检测与质量评估系统
计算机视觉·分类·数据挖掘
yousuotu2 天前
基于 Python 实现亚马逊销售数据分析
数据挖掘·数据分析