如何用matplotlib绘制图像分类任务的类别特征空间分布

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D

# 加载示例数据(Iris 数据集)
data = load_iris()
X = data.data
y = data.target
categories = data.target_names

# 使用PCA将数据降维到二维
pca_2d = PCA(n_components=2)
X_reduced_2d = pca_2d.fit_transform(X)

# 绘制二维特征空间分布
plt.figure(figsize=(10, 8))
for i, category in enumerate(categories):
    plt.scatter(X_reduced_2d[y == i, 0], X_reduced_2d[y == i, 1], label=category)
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.title('类别特征空间分布(二维)')
plt.legend()
plt.savefig('2d_feature_space.png')
plt.show()

# 使用PCA将数据降维到三维
pca_3d = PCA(n_components=3)
X_reduced_3d = pca_3d.fit_transform(X)

# 绘制三维特征空间分布
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
for i, category in enumerate(categories):
    ax.scatter(X_reduced_3d[y == i, 0], X_reduced_3d[y == i, 1], X_reduced_3d[y == i, 2], label=category)
ax.set_xlabel('PCA 1')
ax.set_ylabel('PCA 2')
ax.set_zlabel('PCA 3')
ax.set_title('类别特征空间分布(三维)')
ax.legend()
plt.savefig('3d_feature_space.png')
plt.show()
相关推荐
HaiLang_IT1 小时前
计算机视觉选题指南(2026版):图像分类、目标检测、分割等热门方向详解
计算机视觉·分类·课程设计
童话名剑3 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
LOnghas12114 小时前
电动汽车充电接口自动识别与定位_yolo13-C3k2-Converse_六种主流充电接口检测分类
人工智能·目标跟踪·分类
Katecat996635 小时前
基于YOLO11-HAFB-1的五种羊品种分类识别系统详解
人工智能·数据挖掘
-To be number.wan7 小时前
Python数据分析:Matplotlib 绘图练习
python·数据分析·matplotlib
ASD123asfadxv11 小时前
汽车保险丝盒元件识别与分类:基于Faster R-CNN与ResNet101的检测方案详解
分类·r语言·汽车
Christo311 小时前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
muddjsv11 小时前
科研级置信区间(CI)曲线可视化实战(Matplotlib)
matplotlib
BYSJMG12 小时前
计算机毕设选题推荐:基于大数据的癌症数据分析与可视化系统
大数据·vue.js·python·数据挖掘·数据分析·课程设计
ASD123asfadxv12 小时前
蝴蝶鱼种类识别与分类_yolov10n-SPDConv改进模型实战详解
yolo·分类·数据挖掘