【AI编译器】triton学习:矩阵乘优化

Matrix Multiplication¶

主要内容:

块级矩阵乘法

多维指针算术

重新编排程序以提升L2缓存命

自动性能调整

Motivations¶

矩阵乘法是当今高性能计算系统的一个关键组件,在大多数情况下被用于构建硬件。由于该操作特别复杂,因此通常由软件提供商来进行实现,而不是使用者自己手动编写代码。这些库称为"内核库"(例如cuBLAS),可能会存在一定的版权限制,并且通常无法随意修改以适用于深度学习工作负载中的特殊需求(例如融合式活动函数)。本教程将带你了解如何使用 Triton 自行编写稳定、可扩展的矩阵乘法函数,以实现高性能计算系统所需的功能。

大概来说,我们将要写的内核实现下面这种固定步长算法,对一个(M、K)矩阵和一个(K、N)矩阵进行乘法运算:

python 复制代码
# Do in parallel
for m in range(0, M, BLOCK_SIZE_M):
 # Do in parallel
 for n in range(0, N, BLOCK_SIZE_N):
   acc = zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=float32)
   for k in range(0, K, BLOCK_SIZE_K):
     a = A[m : m+BLOCK_SIZE_M, k : k+BLOCK_SIZE_K]
     b = B[k : k+BLOCK_SIZE_K, n : n+BLOCK_SIZE_N]
     acc += dot(a, b)
   C[m : m+BLOCK_SIZE_M, n : n+BLOCK_SIZE_N] = acc

在每个嵌套程序的每次递归过程中,Triton 实例都会产生一个专门的计算机程序来执行。

Compute Kernel¶

上面算法的实现在Triton上其实并不困难。只是内部迭代过程中,对于要从A和B缓存区读取数据的记忆位置计算这一步骤会有些复杂。为了实现该操作,我们需要使用多维指针运算方式。

指针数学运算符号¶

如果 X 是一个行向矩阵,那么X[i,j]的存储位址为 &X[i,j] = X + istride_xi + j stride_xj。因此,可以将A[m:m+BLOCK_SIZE_M, k:k+BLOCK_SIZE_K]和 B[k:k+BLOCK_SIZE_K, n:n+BLOCK_SIZE_N]的块中存储地址表示成以下形式的虚拟代码:

python 复制代码
&A[m : m+BLOCK_SIZE_M, k:k+BLOCK_SIZE_K] =  a_ptr + (m : m+BLOCK_SIZE_M)[:, None]*A.stride(0) + (k : k+BLOCK_SIZE_K)[None, :]*A.stride(1);
&B[k : k+BLOCK_SIZE_K, n:n+BLOCK_SIZE_N] =  b_ptr + (k : k+BLOCK_SIZE_K)[:, None]*B.stride(0) + (n : n+BLOCK_SIZE_N)[None, :]*B.stride(1);

这意味着在Triton软件中,我们可以将A和B两个向量的指针分段设置为0(即i=0)。且需要注意的是,当M与数据握的大小BLOCK_SIZE_M不是相匹配的时候,我们可以通过添加一个额外模式来处理这种情况,例如,在数据中往底部加上一些无用的值。此后我们将为K维度使用遮蔽式载入操作进行处理。

python 复制代码
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None]*stride_am + offs_k [None, :]*stride_ak)
b_ptrs = b_ptr + (offs_k [:, None]*stride_bk + offs_bn[None, :]*stride_bn)

然后在内部循环中进行以下更新:

python 复制代码
a_ptrs += BLOCK_SIZE_K * stride_ak;
b_ptrs += BLOCK_SIZE_K * stride_bk;

二级缓存的优化措施

如上所述,每个程序实例都会计算出一组长度为[BLOCK_SIZE_M,BLOCK_SIZE_N]的C语言代码块。这种方式非常重要,因为执行顺序可能导致该程序中L2缓存的命中率不同,而且令人遗憾的是,如果我们使用矩阵增量式顺序执行代码,则其性能将会受到影响。

python 复制代码
pid = tl.program_id(axis=0)
grid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // grid_n
pid_n = pid % grid_n

这根本不够用。

解决这个问题的一种方法是在排列块时采用数据重复使用的最佳组合。 我们可以"将所有 GROUP_M 行都集成到同一块中",然后再按照对应的列进行排序:

python 复制代码
# Program ID
pid = tl.program_id(axis=0)
# Number of program ids along the M axis
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
# Number of programs ids along the N axis
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
# Number of programs in group
num_pid_in_group = GROUP_SIZE_M * num_pid_n
# Id of the group this program is in
group_id = pid // num_pid_in_group
# Row-id of the first program in the group
first_pid_m = group_id * GROUP_SIZE_M
# If `num_pid_m` isn't divisible by `GROUP_SIZE_M`, the last group is smaller
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
# *Within groups*, programs are ordered in a column-major order
# Row-id of the program in the *launch grid*
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
# Col-id of the program in the *launch grid*
pid_n = (pid % num_pid_in_group) // group_size_m

以下的矩阵乘法是每个矩阵块为九个,共有九个矩阵乘法操作。通过比较如果我们按行向量序排列输出的话,则需要在SRAM中加载90个元素来计算第一层的9个输出值,而若是以固定单元格为基础进行分组操作,只需加载54个元素。

实际上,这会使我们矩阵乘法的算法执行效率提高超过10%(例如:A100在220至245TFLOPS之间)。

Final Result¶

python 复制代码
import torch

import triton
import triton.language as tl


def is_cuda():
   return triton.runtime.driver.active.get_current_target().backend == "cuda"


def is_hip_mi200():
   target = triton.runtime.driver.active.get_current_target()
   return target.backend == 'hip' and target.arch == 'gfx90a'


def get_cuda_autotune_config():
   return [
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3,
                     num_warps=8),
       triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5,
                     num_warps=2),
       triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5,
                     num_warps=2),
       # Good config for fp8 inputs.
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3,
                     num_warps=8),
       triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3,
                     num_warps=8),
       triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4),
       triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4,
                     num_warps=4)
   ]


def get_hip_autotune_config():
   return [
       triton.Config(
           {'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 1, 'waves_per_eu': 2},
           num_warps=4, num_stages=0),
       triton.Config(
           {'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 4, 'waves_per_eu': 2},
           num_warps=8, num_stages=0),
       triton.Config(
           {'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 1, 'waves_per_eu': 2},
           num_warps=8, num_stages=0),
       triton.Config(
           {'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8, 'waves_per_eu': 3},
           num_warps=4, num_stages=0),
       triton.Config(
           {'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 1, 'waves_per_eu': 8},
           num_warps=4, num_stages=0),
   ]


def get_autotune_config():
   if is_cuda():
       return get_cuda_autotune_config()
   else:
       return get_hip_autotune_config()


# `triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes:
#   - A list of `triton.Config` objects that define different configurations of
#       meta-parameters (e.g., `BLOCK_SIZE_M`) and compilation options (e.g., `num_warps`) to try
#   - An auto-tuning *key* whose change in values will trigger evaluation of all the
#       provided configs
@triton.autotune(
   configs=get_autotune_config(),
   key=['M', 'N', 'K'],
)
@triton.jit
def matmul_kernel(
       # Pointers to matrices
       a_ptr, b_ptr, c_ptr,
       # Matrix dimensions
       M, N, K,
       # The stride variables represent how much to increase the ptr by when moving by 1
       # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
       # by to get the element one row down (A has M rows).
       stride_am, stride_ak,  #
       stride_bk, stride_bn,  #
       stride_cm, stride_cn,
       # Meta-parameters
       BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,  #
       GROUP_SIZE_M: tl.constexpr,  #
       ACTIVATION: tl.constexpr  #
):
   """Kernel for computing the matmul C = A x B.
   A has shape (M, K), B has shape (K, N) and C has shape (M, N)
   """
   # -----------------------------------------------------------
   # Map program ids `pid` to the block of C it should compute.
   # This is done in a grouped ordering to promote L2 data reuse.
   # See above `L2 Cache Optimizations` section for details.
   pid = tl.program_id(axis=0)
   num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
   num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
   num_pid_in_group = GROUP_SIZE_M * num_pid_n
   group_id = pid // num_pid_in_group
   first_pid_m = group_id * GROUP_SIZE_M
   group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
   pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
   pid_n = (pid % num_pid_in_group) // group_size_m

   # ----------------------------------------------------------
   # Create pointers for the first blocks of A and B.
   # We will advance this pointer as we move in the K direction
   # and accumulate
   # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
   # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
   # See above `Pointer Arithmetic` section for details
   offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
   offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
   offs_k = tl.arange(0, BLOCK_SIZE_K)
   a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
   b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)

   # -----------------------------------------------------------
   # Iterate to compute a block of the C matrix.
   # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
   # of fp32 values for higher accuracy.
   # `accumulator` will be converted back to fp16 after the loop.
   accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
   for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
       # Load the next block of A and B, generate a mask by checking the K dimension.
       # If it is out of bounds, set it to 0.
       a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
       b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
       # We accumulate along the K dimension.
       accumulator = tl.dot(a, b, accumulator)
       # Advance the ptrs to the next K block.
       a_ptrs += BLOCK_SIZE_K * stride_ak
       b_ptrs += BLOCK_SIZE_K * stride_bk
   # You can fuse arbitrary activation functions here
   # while the accumulator is still in FP32!
   if ACTIVATION == "leaky_relu":
       accumulator = leaky_relu(accumulator)
   c = accumulator.to(tl.float16)

   # -----------------------------------------------------------
   # Write back the block of the output matrix C with masks.
   offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
   offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
   c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
   c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
   tl.store(c_ptrs, c, mask=c_mask)


# We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
@triton.jit
def leaky_relu(x):
   return tl.where(x >= 0, x, 0.01 * x)

我们现在可以创建一个操作简单的函数包装器,具有两个输入张量参数(), 该函数:(1)检查输入张量是否符合任何形状要求;(2)分配输出;(3)调用上面所示的核心计算。

python 复制代码
def matmul(a, b, activation=""):
   # Check constraints.
   assert a.shape[1] == b.shape[0], "Incompatible dimensions"
   assert a.is_contiguous(), "Matrix A must be contiguous"
   M, K = a.shape
   K, N = b.shape
   # Allocates output.
   c = torch.empty((M, N), device=a.device, dtype=torch.float16)
   # 1D launch kernel where each block gets its own program.
   grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
   matmul_kernel[grid](
       a, b, c,  #
       M, N, K,  #
       a.stride(0), a.stride(1),  #
       b.stride(0), b.stride(1),  #
       c.stride(0), c.stride(1),  #
       ACTIVATION=activation  #
   )
   return c

Unit Test¶

我们可以对自定义的矩阵乘法运算与原生执行操作的Torch进行测试(即cuBLAS)。

python 复制代码
torch.manual_seed(0)
a = torch.randn((512, 512), device='cuda', dtype=torch.float16)
b = torch.randn((512, 512), device='cuda', dtype=torch.float16)
triton_output = matmul(a, b)
torch_output = torch.matmul(a, b)
print(f"triton_output_with_fp16_inputs={triton_output}")
print(f"torch_output_with_fp16_inputs={torch_output}")
# Bigger tolerance for AMD MI200 devices.
# MI200 devices use reduced precision fp16 and bf16 and flush input and
# output denormal values to zero. Detailed info is at: https://pytorch.org/docs/stable/notes/numerical_accuracy.html#reduced-precision-fp16-and-bf16-gemms-and-convolutions-on-amd-instinct-mi200-devices
rtol = 1e-2 if is_hip_mi200() else 0
if torch.allclose(triton_output, torch_output, atol=1e-2, rtol=rtol):
   print("✅ Triton and Torch match")
else:
   print("❌ Triton and Torch differ")

TORCH_HAS_FP8 = hasattr(torch, "float8_e5m2")
if TORCH_HAS_FP8 and is_cuda():
   torch.manual_seed(0)
   a = torch.randn((512, 512), device="cuda", dtype=torch.float16)
   b = torch.randn((512, 512), device="cuda", dtype=torch.float16)
   a = a.to(torch.float8_e5m2)
   # pre-transpose b for efficiency.
   b = b.T
   b = b.to(torch.float8_e5m2)
   triton_output = matmul(a, b)
   torch_output = torch.matmul(a.to(torch.float16), b.to(torch.float16))
   print(f"triton_output_with_fp8_inputs={triton_output}")
   print(f"torch_output_with_fp8_inputs={torch_output}")
   if torch.allclose(triton_output, torch_output, atol=0.125, rtol=0):
       print("✅ Triton and Torch match")
   else:
       print("❌ Triton and Torch differ")
python 复制代码
triton_output_with_fp16_inputs=tensor([[-10.9531,  -4.7109,  15.6953,  ..., -28.4062,   4.3320, -26.4219],
       [ 26.8438,  10.0469,  -5.4297,  ..., -11.2969,  -8.5312,  30.7500],
       [-13.2578,  15.8516,  18.0781,  ..., -21.7656,  -8.6406,  10.2031],
       ...,
       [ 40.2812,  18.6094, -25.6094,  ...,  -2.7598,  -3.2441,  41.0000],
       [ -6.1211, -16.8281,   4.4844,  ..., -21.0312,  24.7031,  15.0234],
       [-17.0938, -19.0000,  -0.3831,  ...,  21.5469, -30.2344, -13.2188]],
      device='cuda:0', dtype=torch.float16)
torch_output_with_fp16_inputs=tensor([[-10.9531,  -4.7109,  15.6953,  ..., -28.4062,   4.3320, -26.4219],
       [ 26.8438,  10.0469,  -5.4297,  ..., -11.2969,  -8.5312,  30.7500],
       [-13.2578,  15.8516,  18.0781,  ..., -21.7656,  -8.6406,  10.2031],
       ...,
       [ 40.2812,  18.6094, -25.6094,  ...,  -2.7598,  -3.2441,  41.0000],
       [ -6.1211, -16.8281,   4.4844,  ..., -21.0312,  24.7031,  15.0234],
       [-17.0938, -19.0000,  -0.3831,  ...,  21.5469, -30.2344, -13.2188]],
      device='cuda:0', dtype=torch.float16)
✅ Triton and Torch match
triton_output_with_fp8_inputs=tensor([[-21.4375,  13.1719,   6.0352,  ...,  28.7031,   8.6719, -40.7500],
       [ 10.0000,  37.0000,  -5.5664,  ...,  20.9844,  46.8125,  30.8281],
       [ 19.5625,  -3.0078, -20.0469,  ...,  -2.1309,  -8.0625,  12.5625],
       ...,
       [-18.1562, -34.1562, -27.4219,  ..., -27.3906, -24.0938, -12.3516],
       [ -3.3945,  -8.6250, -23.6562,  ...,  -4.1094,  -3.5332, -16.0781],
       [-23.9688,  -3.2637, -33.6875,  ...,  17.3125, -36.6250,  25.8594]],
      device='cuda:0', dtype=torch.float16)
torch_output_with_fp8_inputs=tensor([[-21.4375,  13.1719,   6.0352,  ...,  28.7031,   8.6719, -40.7500],
       [ 10.0000,  37.0000,  -5.5664,  ...,  20.9844,  46.8125,  30.8281],
       [ 19.5625,  -3.0078, -20.0469,  ...,  -2.1309,  -8.0625,  12.5625],
       ...,
       [-18.1562, -34.1562, -27.4219,  ..., -27.3906, -24.0938, -12.3516],
       [ -3.3945,  -8.6250, -23.6562,  ...,  -4.1094,  -3.5332, -16.0781],
       [-23.9688,  -3.2637, -33.6875,  ...,  17.3125, -36.6250,  25.8594]],
      device='cuda:0', dtype=torch.float16)
✅ Triton and Torch match

Benchmark¶

性能指标¶

我们可以对现有的内核与cuBLAS或rocBLAS进行比较,这里以对方阵为例,但也能够根据你自定义需求对其他矩阵形状进行性能测试。

python 复制代码
ref_lib = 'cuBLAS' if is_cuda() else 'rocBLAS'

configs = []
for fp8_inputs in [False, True]:
   if fp8_inputs and (not TORCH_HAS_FP8 or not is_cuda()):
       continue
   configs.append(
       triton.testing.Benchmark(
           x_names=["M", "N", "K"],  # Argument names to use as an x-axis for the plot
           x_vals=[128 * i for i in range(2, 33)],  # Different possible values for `x_name`
           line_arg="provider",  # Argument name whose value corresponds to a different line in the plot
           # Possible values for `line_arg`
           # Don't compare to cublas for fp8 cases as torch.matmul doesn't support fp8 at the moment.
           line_vals=["triton"] if fp8_inputs else [ref_lib.lower(), "triton"],  # Label name for the lines
           line_names=["Triton"] if fp8_inputs else [ref_lib, "Triton"],  # Line styles
           styles=[("green", "-"), ("blue", "-")],
           ylabel="TFLOPS",  # Label name for the y-axis
           plot_name="matmul-performance-" +
           ("fp16" if not fp8_inputs else "fp8"),  # Name for the plot, used also as a file name for saving the plot.
           args={"fp8_inputs": fp8_inputs},
       ))


@triton.testing.perf_report(configs)
def benchmark(M, N, K, provider, fp8_inputs):
   a = torch.randn((M, K), device='cuda', dtype=torch.float16)
   b = torch.randn((K, N), device='cuda', dtype=torch.float16)
   if TORCH_HAS_FP8 and fp8_inputs:
       a = a.to(torch.float8_e5m2)
       b = b.T
       b = b.to(torch.float8_e5m2)
   quantiles = [0.5, 0.2, 0.8]
   if provider == ref_lib.lower():
       ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), quantiles=quantiles)
   if provider == 'triton':
       ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b), quantiles=quantiles)
   perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
   return perf(ms), perf(max_ms), perf(min_ms)


benchmark.run(show_plots=True, print_data=True)
python 复制代码
matmul-performance-fp16:
        M       N       K      cuBLAS      Triton
0    256.0   256.0   256.0    4.096000    4.096000
1    384.0   384.0   384.0   12.288000   12.288000
2    512.0   512.0   512.0   26.214401   26.214401
3    640.0   640.0   640.0   42.666665   42.666665
4    768.0   768.0   768.0   63.195428   68.056616
5    896.0   896.0   896.0   78.051553   93.661869
6   1024.0  1024.0  1024.0  110.376426   99.864382
7   1152.0  1152.0  1152.0  135.726544  129.825388
8   1280.0  1280.0  1280.0  163.840004  163.840004
9   1408.0  1408.0  1408.0  155.765024  132.970149
10  1536.0  1536.0  1536.0  176.947204  157.286398
11  1664.0  1664.0  1664.0  179.978245  176.449258
12  1792.0  1792.0  1792.0  172.914215  204.353162
13  1920.0  1920.0  1920.0  200.347822  168.585369
14  2048.0  2048.0  2048.0  226.719125  190.650180
15  2176.0  2176.0  2176.0  211.827867  211.827867
16  2304.0  2304.0  2304.0  229.691080  228.592087
17  2432.0  2432.0  2432.0  203.583068  199.251522
18  2560.0  2560.0  2560.0  224.438347  218.453323
19  2688.0  2688.0  2688.0  200.704002  198.602388
20  2816.0  2816.0  2816.0  211.719459  210.696652
21  2944.0  2944.0  2944.0  218.579083  220.513412
22  3072.0  3072.0  3072.0  208.173173  208.173173
23  3200.0  3200.0  3200.0  214.046818  219.178074
24  3328.0  3328.0  3328.0  208.067338  208.973281
25  3456.0  3456.0  3456.0  217.308808  219.080343
26  3584.0  3584.0  3584.0  216.142772  211.565625
27  3712.0  3712.0  3712.0  209.428397  213.000737
28  3840.0  3840.0  3840.0  210.250955  205.179974
29  3968.0  3968.0  3968.0  213.142249  215.971570
30  4096.0  4096.0  4096.0  221.847481  215.784121
matmul-performance-fp8:
        M       N       K      Triton
0    256.0   256.0   256.0    3.276800
1    384.0   384.0   384.0   10.053818
2    512.0   512.0   512.0   20.164923
3    640.0   640.0   640.0   34.133334
4    768.0   768.0   768.0   42.130286
5    896.0   896.0   896.0   58.538665
6   1024.0  1024.0  1024.0   61.680940
7   1152.0  1152.0  1152.0   80.702267
8   1280.0  1280.0  1280.0  102.400003
9   1408.0  1408.0  1408.0   82.602666
10  1536.0  1536.0  1536.0   99.688560
11  1664.0  1664.0  1664.0  116.868992
12  1792.0  1792.0  1792.0  135.414749
13  1920.0  1920.0  1920.0  100.905113
14  2048.0  2048.0  2048.0  114.912434
15  2176.0  2176.0  2176.0  121.226797
16  2304.0  2304.0  2304.0  134.201527
17  2432.0  2432.0  2432.0  134.423269
18  2560.0  2560.0  2560.0  146.941707
19  2688.0  2688.0  2688.0  118.171514
20  2816.0  2816.0  2816.0  129.036114
21  2944.0  2944.0  2944.0  139.988852
22  3072.0  3072.0  3072.0  144.446699
23  3200.0  3200.0  3200.0  139.433550
24  3328.0  3328.0  3328.0  131.131689
25  3456.0  3456.0  3456.0  139.725414
26  3584.0  3584.0  3584.0  149.113421
27  3712.0  3712.0  3712.0  142.506914
28  3840.0  3840.0  3840.0  138.413021
29  3968.0  3968.0  3968.0  147.194128
30  4096.0  4096.0  4096.0  156.430916
相关推荐
神奇夜光杯9 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠12 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon21 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
Mephisto.java28 分钟前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
羊小猪~~28 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨29 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画34 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云35 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓1 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing1 小时前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc