Python28-2 机器学习算法之SVM(支持向量机)

SVM(支持向量机)

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归分析的监督学习模型,在机器学习领域中被广泛应用。SVM的目标是找到一个最佳的分割超平面,将不同类别的数据分开,使得两个类别之间的间隔(即边界)最大化。下面是对SVM的详细解释:

SVM的基本概念
  1. 超平面(Hyperplane)

    • 在二维空间中,超平面是将平面分为两部分的直线

    • 在三维空间中,超平面是将空间分为两部分的平面

    • 在更高维度的空间中,超平面是将该空间分为两部分的一个n-1维的子空间

  2. 支持向量(Support Vectors)

    • 支持向量是离分割超平面最近的那些数据点

    • 这些点是最重要的,因为它们定义了超平面的位置和方向

    • 移动这些点将会改变超平面的位置

  3. 间隔(Margin)

    • 间隔是指支持向量与超平面之间的距离

    • SVM的目标是最大化这个间隔,以提高分类器的鲁棒性和泛化能力

SVM的核函数(Kernel Function)

SVM可以通过使用核函数将输入数据映射到高维空间,在高维空间中,原本非线性可分的数据可以变成线性可分的。常见的核函数包括:

  1. 线性核(Linear Kernel):适用于线性可分的数据。

  2. 多项式核(Polynomial Kernel):用于非线性数据。

  3. 径向基函数核(RBF Kernel):也称高斯核,常用于非线性数据。

  4. Sigmoid核(Sigmoid Kernel):模拟神经网络的激活函数。

SVM算法工作原理
  1. 训练阶段

    • 给定训练数据集,SVM通过求解一个优化问题,找到最大化间隔的分割超平面。

    • 该优化问题通常是一个凸二次规划问题,可以通过各种优化算法求解。

  2. 分类阶段

    • 对于新的数据点,SVM根据其与分割超平面的相对位置进行分类。

    • 数据点落在超平面一侧的属于一个类别,落在另一侧的属于另一个类别。

SVM的数学描述

假设我们有一个训练数据集 ( (x_1, y_1), (x_2, y_2), ···, (x_n, y_n) ),其中 ( x_i ) 是特征向量,( y_i ) 是对应的类别标签,取值为 ( {+1, -1} )。

SVM的优化目标是:

其中,( w ) 是超平面的法向量,( b ) 是偏置项。

SVM的优缺点

优点

  • 能够有效处理高维空间的数据。

  • 在样本数量远大于特征数量的情况下仍然有效。

  • 具有较好的泛化能力,能够防止过拟合。

缺点

  • 对于大规模数据集,训练时间较长。

  • 对于含有噪声的数据表现较差,尤其是在类别重叠的情况下。

  • SVM的参数选择和核函数的选择需要经验和实验。

示例代码1

使用Python的scikit-learn库实现SVM分类器进行二维点的分类。

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score
import matplotlib.pyplot as plt

# 加载Iris数据集
iris = datasets.load_iris()
X = iris.data[:, :2]  # 仅使用前两个特征进行可视化
y = iris.target

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建和训练SVM分类器
clf = SVC(kernel='linear', C=1.0)
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率和分类报告
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print(classification_report(y_test, y_pred))

# 可视化决策边界
def plot_decision_boundary(clf, X, y):
    h = .02  # 网格步长
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')
    plt.title('SVM Decision Boundary')
    plt.show()

plot_decision_boundary(clf, X_test, y_test)

结果可视化:

上图中有部分点被错误的分类了,分类错误可能由以下原因引起:数据中存在噪声和异常值、数据本身在当前维度下不可分、训练数据量不足或特征选择不当、模型参数设置不合理、类别不平衡问题、以及模型过拟合或欠拟合。这些因素都会影响模型的准确性和泛化能力,导致在某些数据点上出现分类错误。

示例代码2

使用SVM进行三维数据分割。

import numpy as np
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 在Jupyter Notebook中启用交互模式
%matplotlib notebook

# 生成合成数据集
np.random.seed(42)
X, y = datasets.make_classification(
    n_samples=100, n_features=3, n_informative=3, n_redundant=0, n_clusters_per_class=1
)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建和训练SVM分类器
clf = SVC(kernel='linear', C=1.0)
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

# 可视化决策边界
def plot_decision_boundary_3d(clf, X, y):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # 设置网格范围
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    z_min, z_max = X[:, 2].min() - 1, X[:, 2].max() + 1
    xx, yy = np.meshgrid(
        np.arange(x_min, x_max, 0.1),
        np.arange(y_min, y_max, 0.1)
    )

    # 计算平面上的决策函数值
    zz = (-clf.intercept_[0] - clf.coef_[0][0] * xx - clf.coef_[0][1] * yy) / clf.coef_[0][2]

    # 绘制决策平面
    ax.plot_surface(xx, yy, zz, alpha=0.3, color='r', edgecolor='none')

    # 绘制数据点
    scatter = ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.viridis, edgecolors='k')
    legend1 = ax.legend(*scatter.legend_elements(), title="Classes")
    ax.add_artist(legend1)

    ax.set_xlabel('Feature 1')
    ax.set_ylabel('Feature 2')
    ax.set_zlabel('Feature 3')
    ax.set_title('SVM Decision Boundary in 3D')

    # 允许图形旋转
    ax.view_init(elev=30, azim=30)
    plt.show()

plot_decision_boundary_3d(clf, X_test, y_test)

结果可视化:

从上面的结果可以看出SVM正确分割了两类空间中的点。以上内容总结自网络,如有帮助欢迎转发,我们下次再见!

相关推荐
幸运超级加倍~14 分钟前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan2019031322 分钟前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法24 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR24 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
linsa_pursuer25 分钟前
快乐数算法
算法·leetcode·职场和发展
小芒果_0126 分钟前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
MarkHD27 分钟前
第十一天 线性代数基础
线性代数·决策树·机器学习
qq_4340859028 分钟前
Day 52 || 739. 每日温度 、 496.下一个更大元素 I 、503.下一个更大元素II
算法
Beau_Will28 分钟前
ZISUOJ 2024算法基础公选课练习一(2)
算法
打羽毛球吗️30 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习