python作为一种强大的编程语言,可以帮助我们更便捷地获取互联网上的大量数据。其中,爬虫技术是极具代表性的一部分。爬虫可以在互联网上获取各种数据并进行分析,为我们提供大量的有价值的信息。在python中,爬虫技术也能够得到广泛应用。百度知道是提供了大量知识问答的网站,本文介绍在python中实现百度知道爬虫的方法。
- 开始爬取
首先,我们需要了解如何爬取百度知道网站。Python中可以使用requests库或者urllib库中的urlopen函数来获取网站的源代码。在获取到源代码后,我们可以使用BeautifulSoup库来解析网页文档,从而方便地筛选出所需信息。在这里,我们需要爬取的是每一个问题和对应的最佳答案。通过查看百度知道的源代码,我们可以发现每个最佳答案都有其独立的classID,我们可以根据这个选择对应的内容。
下面是代码的实现过程:
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import
requests
from
bs4 ``import
BeautifulSoup
# 网页地址
url ``=
"https://zhidao.baidu.com/question/2031956566959407839.html"
# 发送请求
r ``=
requests.get(url)
# 解析网页
soup ``=
BeautifulSoup(r.text, ``"html.parser"``)
# 获取问题
question ``=
soup.find(``"span"``, ``class_``=``"ask-title"``).text
print``(``"问题: "``, question)
# 获取最佳答案
answer ``=
soup.find(``"pre"``, ``class_``=``"best-text mb-10"``).text
print``(``"最佳答案: "``, answer)
|
- 爬取多个问题及答案
接下来,我们需要爬取多个问题及其答案。我们可以创建一个问题列表,并通过for循环将每个问题及答案都爬取出来,然后将其打印出来。由于百度知道上的每一个问题URL的后缀都是不同的,因此我们需要通过字符串的格式化来自动生成需要爬取的网页地址。
下面是实现代码:
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import
requests
from
bs4 ``import
BeautifulSoup
# 创建问题列表
questions ``=
[
``"2031956566959407839"``,
``"785436012916117832"``,
``"1265757662946113922"``,
``"455270192556513192"``,
``"842556478655981450"
]
# 循环爬取问题和最佳答案
for
q ``in
questions:
``# 根据问题ID拼接URL
``url ``=
f``"https://zhidao.baidu.com/question/{q}.html"
``# 发送请求
``r ``=
requests.get(url)
``# 解析网页
``soup ``=
BeautifulSoup(r.text, ``"html.parser"``)
``# 获取问题
``try``:
``question ``=
soup.find(``"span"``, ``class_``=``"ask-title"``).text
``except``:
``question ``=
""
``# 获取最佳答案
``try``:
``answer ``=
soup.find(``"pre"``, ``class_``=``"best-text mb-10"``).text
``except``:
``answer ``=
""
``# 打印问题和答案
``print``(``"问题: "``, question)
``print``(``"最佳答案: "``, answer)
``print``(``"----------------------"``)
|
- 将爬取结果保存到文件中
最后,我们将爬取结果保存到文件中。可以使用Python的内置模块csv,将每个问题及答案分别保存到csv文件中。另外,为了避免中文乱码问题,我们可以在csv文件头部加入BOM(Byte Order Mark)。
下面是实现代码:
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import
requests
from
bs4 ``import
BeautifulSoup
import
csv
import
codecs
# 创建问题列表
questions ``=
[
``"2031956566959407839"``,
``"785436012916117832"``,
``"1265757662946113922"``,
``"455270192556513192"``,
``"842556478655981450"
]
# 创建文件
with ``open``(``"questions.csv"``, ``"w"``, newline``=``'``', encoding='``utf``-``8``-``sig') as ``file``:
``writer ``=
csv.writer(``file``)
``writer.writerow([``'问题'``, ``'最佳答案'``])
``# 循环爬取问题和最佳答案
``for
q ``in
questions:
``# 根据问题ID拼接URL
``url ``=
f``"https://zhidao.baidu.com/question/{q}.html"
``# 发送请求
``r ``=
requests.get(url)
``# 解析网页
``soup ``=
BeautifulSoup(r.text, ``"html.parser"``)
``# 获取问题
``try``:
``question ``=
soup.find(``"span"``, ``class_``=``"ask-title"``).text
``except``:
``question ``=
""
``# 获取最佳答案
``try``:
``answer ``=
soup.find(``"pre"``, ``class_``=``"best-text mb-10"``).text
``except``:
``answer ``=
""
``# 保存到csv文件
``writer.writerow([question, answer])
|
- 总结
在本文中,我们介绍了如何使用Python实现爬取百度知道网站的方法。我们学习了如何使用requests和urllib库发送请求,使用BeautifulSoup库解析网页,及如何保存爬取的结果到csv文件中。通过这些方法,我们可以轻松地获取互联网上的数据,并进行分析。爬虫技术在互联网时代的大数据分析中扮演了非常重要的角色,作为Python程序员,学习并掌握相关知识比较重要。