【PYG】pytorch中size和shape有什么不同

  • 一般使用tensor.shape打印维度信息,因为简单直接

在 PyTorch 中,sizeshape 都用于获取张量的维度信息,但它们之间有细微的区别。下面是它们的定义和用法:

  1. size

    • size 是一个方法(size())和属性(size),用于返回张量的维度信息。

    • 使用方法 size() 可以选择获取特定维度的大小。

    • 示例:

      python 复制代码
      import torch
      
      tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                             [2.0, 3.0, 4.0, 5.0],
                             [3.0, 4.0, 5.0, 6.0]])
      
      # 使用 size 方法(无参数)
      size_method = tensor.size()
      print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])
      
      # 使用 size 方法(带维度参数)
      size_dim1 = tensor.size(1)
      print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4
  2. shape

    • shape 是一个属性,直接返回张量的维度信息,表示为一个 torch.Size 对象。

    • shape 属性不能接受参数,因此不能直接用于获取特定维度的大小。

    • 示例:

      python 复制代码
      import torch
      
      tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                             [2.0, 3.0, 4.0, 5.0],
                             [3.0, 4.0, 5.0, 6.0]])
      
      # 使用 shape 属性
      shape_attr = tensor.shape
      print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])

区别

  • size 方法和属性

    • size 方法可以接受参数,例如 size(dim),用于获取特定维度的大小。
    • size 属性直接返回一个 torch.Size 对象,表示张量的所有维度。
  • shape 属性

    • shape 属性只返回一个 torch.Size 对象,表示张量的所有维度。
    • shape 属性不能直接获取特定维度的大小。

总结

  • size 提供了方法和属性,方法可以接受参数来获取特定维度的大小。

  • shape 仅作为属性,返回整个张量的维度信息,不能接受参数。

  • tensor.size返回<built-in method size of Tensor object at 0x7fee569194a0>

  • tensor.shape返回<class 'torch.Size'>,tensor.size()返回<class 'torch.Size'>

示例对比

python 复制代码
import torch

tensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],
                       [2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0]])

# 使用 size 属性
size_attr = tensor.size
print(f"使用 size 属性: {size_attr}")  # 输出: 使用 size 属性: torch.Size([3, 4])

# 使用 size 方法
size_method = tensor.size()
print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])

# 使用 size 方法获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4

# 使用 shape 属性
shape_attr = tensor.shape
print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])

通过以上示例可以看出,size 方法和属性提供了更灵活的用法,而 shape 属性则是一个简单快捷的方法来获取整个张量的维度信息。


当你直接访问 tensor.size 而不带括号时,你访问的是一个方法对象,而不是调用该方法。要获取张量的尺寸,你需要调用该方法,使用 tensor.size()。让我们通过一些示例来澄清这一点。

示例解释

首先,我们创建一个张量:

python 复制代码
import torch

tensor = torch.tensor([[1.0, 2.0, 3.0],
                       [4.0, 5.0, 6.0]])

获取张量的尺寸

  1. 使用 size() 方法
python 复制代码
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])
  1. 直接访问 size 属性
python 复制代码
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

在第二个示例中,我们得到的是一个方法对象的引用,而不是实际的尺寸信息。

获取特定维度的大小

要获取特定维度的大小,你需要调用 size(dim),其中 dim 是你感兴趣的维度索引:

python 复制代码
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

使用 shape 属性

shape 属性是更直接获取张量尺寸的一种方式:

python 复制代码
shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

总结

  • tensor.size 返回一个方法对象引用。
  • tensor.size() 返回一个 torch.Size 对象,表示张量的形状。
  • tensor.size(dim) 返回特定维度的大小。
  • tensor.shape 直接返回一个 torch.Size 对象,表示张量的形状。

完整示例

python 复制代码
import torch

tensor = torch.tensor([[1.0, 2.0, 3.0],
                       [4.0, 5.0, 6.0]])

# 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])

# 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

# 获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

# 使用 shape 属性
shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])
相关推荐
是Dream呀2 分钟前
昇腾实战|算子模板库Catlass与CANN生态适配
开发语言·人工智能·python·华为
曦云沐3 分钟前
第二篇:LangChain 1.0 模块化架构与依赖管理
人工智能·langchain·智能体
长桥夜波5 分钟前
机器学习日报23
人工智能·机器学习
roman_日积跬步-终至千里7 分钟前
【模式识别与机器学习(9)】数据预处理-第一部分:数据基础认知
人工智能·机器学习
FL162386312914 分钟前
自动驾驶场景驾驶员注意力安全行为睡驾分心驾驶疲劳驾驶检测数据集VOC+YOLO格式5370张6类别
人工智能·yolo·自动驾驶
Java中文社群15 分钟前
找到漏洞了!抓紧薅~N8N调用即梦全免费
人工智能
培根芝士18 分钟前
使用llm-compressor 对 Qwen3-14B 做 AWQ + INT4 量化
人工智能·python
da_vinci_x25 分钟前
Sampler AI + 滤波算法:解决 AIGC 贴图“噪点过剩”,构建风格化 PBR 工业管线
人工智能·算法·aigc·材质·贴图·技术美术·游戏美术
AI人工智能+28 分钟前
表格识别技术:完整还原银行对账单表格结构、逻辑关系及视觉布局,大幅提升使处理速度提升
人工智能·深度学习·ocr·表格识别
珠海西格电力29 分钟前
零碳园区基础架构协同规划:能源-建筑-交通-数字系统的衔接逻辑
大数据·人工智能·智慧城市·能源