scatterlist的相关概念与实例分析

概念

scatterlist

scatterlist用来描述一块内存,sg_table一般用于将物理不同大小的物理内存链接起来,一次性送给DMA控制器搬运

struct scatterlist {
	unsigned long	page_link; //指示该内存块所在的页面
	unsigned int	offset; //指示该内存块在页面中的偏移(起始位置)
	unsigned int	length; //该内存块的长度
	dma_addr_t	dma_address; //该内存块实际的物理起始地址
#ifdef CONFIG_NEED_SG_DMA_LENGTH
	unsigned int	dma_length; //相应的长度信息
#endif
};

page_link:

(1).对于chain sg 来说,记录下一个 SG 数组的首地址,并且用bit[0] 和 bit[1] 来表示是chain sg 还是 end sg;

(2).对于 end sg 来说,只有bit[1] 为1,其他无意义;

(3).对于普通 sg 来说,记录的是关联的内存页块的地址;

sg_table

既然链接起物理内存,那么就需要多个sg;内核给了个sg_table和一系列api便于操作sg;

struct sg_table {
	struct scatterlist *sgl;	/* the list */
	unsigned int nents;		//实际的内存块映射数量
	unsigned int orig_nents;	///内存块映射的数量
};

sg_alloc_table一次可以分配page size / sizeof(scatterlist)个scatterlist结构体;如果超过这个数,就需要再通过sg_alloc_table分配scatterlist,并且通过sg_chain()来连接上一个sg_table和新的sg_table

sg_alloc_table

sg_kmalloc用以批量分配 sg 的内存;G_MAX_SINGLE_ALLOC:系统规定了每次sg_kmalloc的最大个数为4096/32 = 128个

int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
	int ret;
 
	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
			       NULL, 0, gfp_mask, sg_kmalloc);
	if (unlikely(ret))
		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
 
	return ret;
}
EXPORT_SYMBOL(sg_alloc_table);

当申请的时候按照 SG_MAX_SINGLE_ALLOC,那么是一次性申请 4K 内存,系统直接调用 __get_free_page() 从buddy 中分配当没有达到 4K 内存,则通过kmalloc_array()申请 ;

static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
	if (nents == SG_MAX_SINGLE_ALLOC) {
		/*
		 * Kmemleak doesn't track page allocations as they are not
		 * commonly used (in a raw form) for kernel data structures.
		 * As we chain together a list of pages and then a normal
		 * kmalloc (tracked by kmemleak), in order to for that last
		 * allocation not to become decoupled (and thus a
		 * false-positive) we need to inform kmemleak of all the
		 * intermediate allocations.
		 */
		void *ptr = (void *) __get_free_page(gfp_mask);
		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
		return ptr;
	} else
		return kmalloc_array(nents, sizeof(struct scatterlist),
				     gfp_mask);
}

根据nents决定需不需要再次调用sg_kmalloc分配struct scatterlist数组,并返回首个scatterlist的地址,为什么叫数组,因为是在一个页面里面分配的,是连续的

int __sg_alloc_table(struct sg_table *table, unsigned int nents,
		     unsigned int max_ents, struct scatterlist *first_chunk,
		     unsigned int nents_first_chunk, gfp_t gfp_mask,
		     sg_alloc_fn *alloc_fn)
{
	struct scatterlist *sg, *prv;
	unsigned int left;
	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
	unsigned prv_max_ents;
 
    //准备初始化 sg_table,先memset
	memset(table, 0, sizeof(*table));
 
    //sg 条目数量不能为0
	if (nents == 0)
		return -EINVAL;
#ifdef CONFIG_ARCH_NO_SG_CHAIN
	if (WARN_ON_ONCE(nents > max_ents))
		return -EINVAL;
#endif
 
    //初始化还没有申请的sg数目
	left = nents;
	prv = NULL;
	do {
		unsigned int sg_size, alloc_size = left;
 
        //确定此次需要申请的sg 个数
        //申请的sg超过最大值,将分多次分配
		if (alloc_size > curr_max_ents) {
			alloc_size = curr_max_ents;
			sg_size = alloc_size - 1;     //申请的sg数组中,最后一个作为一个chain,不作为有效sg
		} else
			sg_size = alloc_size;
 
        //还剩余多少sg没有申请
		left -= sg_size;
 
		if (first_chunk) {
			sg = first_chunk;
			first_chunk = NULL;
		} else {
			sg = alloc_fn(alloc_size, gfp_mask); //调用sg分配的回调函数
		}
		if (unlikely(!sg)) {
			/*
			 * Adjust entry count to reflect that the last
			 * entry of the previous table won't be used for
			 * linkage.  Without this, sg_kfree() may get
			 * confused.
			 */
			if (prv)
				table->nents = ++table->orig_nents;
 
			return -ENOMEM;
		}
 
        /*
         * 初始化此次申请的sg 数组,这些sg 在物理上是连续的,所以可以直接memset
         * 另外,还会调用sg_mark_end() 初始化最后一个sg为 end sg
         */
		sg_init_table(sg, alloc_size);
 
        //更新sg_table->nents,初始化时 nents和orig_nents相同
		table->nents = table->orig_nents += sg_size;
 
		/*
         * 当再次进入循环时,说明需要的nents是大于max_nents的,那么上一次申请肯定是按照最大值
         * 申请.
         * 第一次申请时,会将sg数组放入sg_table的sgl
         * 当再进入循环时,需要连接新建的sg数组,所以要将prv的最后一个sg设为CHAIN
         */
		if (prv)
			sg_chain(prv, prv_max_ents, sg);
		else
			table->sgl = sg;
 
		//如果没剩余sg需要分配了,将推出循环,此时将最新分配的sg数组的最后一个sg设为END
		if (!left)
			sg_mark_end(&sg[sg_size - 1]);
 
		prv = sg;
		prv_max_ents = curr_max_ents; //能进入下一个循环的话,上一个sg数组肯定按最大值申请的
		curr_max_ents = max_ents;
	} while (left);
 
	return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);

用以配置铰链 sg,offset 和 length 为0,通过该函数将当前的sg数组与下一个sg数组通过chain sg捆绑在一起。

static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents,
			    struct scatterlist *sgl)
{
	/*
	 * offset and length are unused for chain entry.  Clear them.
	 */
	prv[prv_nents - 1].offset = 0;
	prv[prv_nents - 1].length = 0;
 
	/*
	 * Set lowest bit to indicate a link pointer, and make sure to clear
	 * the termination bit if it happens to be set.
	 */
	prv[prv_nents - 1].page_link = ((unsigned long) sgl | SG_CHAIN)
					& ~SG_END;
}

sg跟buffer

常用api

sg_set_page函数用sg_assign_page以将当前sg与某个内存页进行关联;并设置大小和偏移

static inline void sg_set_page(struct scatterlist *sg, struct page *page,
			       unsigned int len, unsigned int offset)
{
	sg_assign_page(sg, page);
	sg->offset = offset;
	sg->length = len;
}

sg_set_buf传入buf,然后用sg_set_page将sg与这个buf的page关联

static inline void sg_set_buf(struct scatterlist *sg, const void *buf,
			      unsigned int buflen)
{
#ifdef CONFIG_DEBUG_SG
	BUG_ON(!virt_addr_valid(buf));
#endif
	sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf));
}

只初始化一个sg

void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
	memset(sgl, 0, sizeof(*sgl) * nents);
	sg_init_marker(sgl, nents);
}
EXPORT_SYMBOL(sg_init_table);
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);

示例

int mmc_io_rw_extended(struct mmc_card *card, int write, unsigned fn,
        unsigned addr, int incr_addr, u8 *buf, unsigned blocks, unsigned blksz)
{
        struct mmc_request mrq = {NULL};
        struct mmc_command cmd = {0};
        struct mmc_data data = {0};
        struct scatterlist sg, *sg_ptr;
        struct sg_table sgtable;
        unsigned int nents, left_size, i;
        unsigned int seg_size = card->host->max_seg_size;

        ......

        data.blksz = blksz;
        /* Code in host drivers/fwk assumes that "blocks" always is >=1 */
        data.blocks = blocks ? blocks : 1;
        data.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;

        left_size = data.blksz * data.blocks;
        nents = (left_size - 1) / seg_size + 1;
        if (nents > 1) {
                if (sg_alloc_table(&sgtable, nents, GFP_KERNEL))
                        return -ENOMEM;

                data.sg = sgtable.sgl;
                data.sg_len = nents;

                for_each_sg(data.sg, sg_ptr, data.sg_len, i) {
                        sg_set_page(sg_ptr, virt_to_page(buf + (i * seg_size)),
                                        min(seg_size, left_size),
                                        offset_in_page(buf + (i * seg_size)));
                        left_size = left_size - seg_size;
                }
        } else {
                data.sg = &sg;
                data.sg_len = 1;

                sg_init_one(&sg, buf, left_size);
        }

       ......
}

sg跟DMA

常用api

判断当前sg是否为chain

#define sg_is_chain(sg)		((sg)->page_link & SG_CHAIN) 

判断当前sg是否为last

#define sg_is_last(sg)		((sg)->page_link & SG_END)

chain sg用来获取下一个指向的sg数组

#define sg_chain_ptr(sg)	\                            
	((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END)))

获取下一个sg,可能在下一个sg_table里

struct scatterlist *sg_next(struct scatterlist *sg)
{
	if (sg_is_last(sg))
		return NULL;

	sg++;
	if (unlikely(sg_is_chain(sg)))
		sg = sg_chain_ptr(sg);

	return sg;
}
EXPORT_SYMBOL(sg_next);

遍历sg

#define for_each_sg(sglist, sg, nr, __i)	\
	for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg))

获取sg关联的页块地址

static inline struct page *sg_page(struct scatterlist *sg)
{
#ifdef CONFIG_DEBUG_SG
	BUG_ON(sg_is_chain(sg));
#endif
	return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END));
}

示例

这是个支持sg的dma控制器;mmp_pdma_desc_hw用来dma描述符描述一个buf的信息,通过sg_dma_address将sg的总线物理地址,作为dma描述符的传输地址(源地址/目的地址),用来发送数据到设备,或者从设备接收数据

mmp_pdma_prep_slave_sg将下一个描述符的地址,给到上一个描述符的--下一个描述符地址的成员,以实现DMA控制器自动遍历描述符,来传输sg的多个数据块。

struct mmp_pdma_desc_hw {
	u32 ddadr;	/* Points to the next descriptor + flags */
	u32 dsadr;	/* DSADR value for the current transfer */
	u32 dtadr;	/* DTADR value for the current transfer */
	u32 dcmd;	/* DCMD value for the current transfer */
} __aligned(32);

mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
                       unsigned int sg_len, enum dma_transfer_direction dir,
                       unsigned long flags, void *context)
{
        struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
        struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
        size_t len, avail;
        struct scatterlist *sg;
        dma_addr_t addr;
        int i;

        if ((sgl == NULL) || (sg_len == 0))
                return NULL;

        chan->byte_align = true;

        mmp_pdma_config_write(dchan, &chan->slave_config, dir);

        for_each_sg(sgl, sg, sg_len, i) {
                addr = sg_dma_address(sg);
                avail = sg_dma_len(sg);

                do {
                        len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
                        if (addr & 0x7)
                                chan->byte_align = true;

                        /* allocate and populate the descriptor */
                        new = mmp_pdma_alloc_descriptor(chan);
                        if (!new) {
                                dev_err(chan->dev, "no memory for desc\n");
                                goto fail;
                        }

                        new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
                        if (dir == DMA_MEM_TO_DEV) {
                                new->desc.dsadr = addr;
                                new->desc.dtadr = chan->dev_addr;
                        } else {
                                new->desc.dsadr = chan->dev_addr;
                                new->desc.dtadr = addr;
                        }

                        if (!first)
                                first = new;
                        else
                                prev->desc.ddadr = new->async_tx.phys; //将下一个描述符的地址,给到上一个描述符的--下一个描述符地址的成员;以实现控制器自动遍历描述符,来传输sg的多个数据块

                        new->async_tx.cookie = 0;
                        async_tx_ack(&new->async_tx);
                        prev = new;

                        /* Insert the link descriptor to the LD ring */
                        list_add_tail(&new->node, &first->tx_list);

                        /* update metadata */
                        addr += len;
                        avail -= len;
                } while (avail);
        }

        first->async_tx.cookie = -EBUSY;
        first->async_tx.flags = flags;

        /* last desc and fire IRQ */
        new->desc.ddadr = DDADR_STOP;
        new->desc.dcmd |= DCMD_ENDIRQEN;

        chan->dir = dir;
        chan->cyclic_first = NULL;

        return &first->async_tx;

fail:
        if (first)
                mmp_pdma_free_desc_list(chan, &first->tx_list);
        return NULL;
}
相关推荐
赟赟、嵌入式13 小时前
linux RTC时钟时间出现了明显的偏移
linux·驱动开发·嵌入式硬件·实时音视频
sukalot14 小时前
windows USB 设备驱动开发- USB管道的通讯(一)
驱动开发
拉达曼迪斯II2 天前
14-28 剑和诗人2 - 高性能编程Bend和Mojo
人工智能·驱动开发·语言模型·创业创新·mojo
Spcarrydoinb3 天前
嵌入式学习——硬件(Linux内核驱动编程LED、蜂鸣器、按键)——day59
linux·驱动开发·学习
cooldream20093 天前
测试驱动开发(TDD)方法详解
驱动开发·tdd
Geektec3 天前
AI在软件开发:助力开发者还是取而代之?
人工智能·驱动开发·计算机·chatgpt·变革
阳爱铭3 天前
GitHub:现代软件开发的协作平台
驱动开发·后端·中间件·面试·架构·github·学习方法
cooldream20093 天前
用户体验驱动开发:打造卓越数字产品的关键
驱动开发·ux
北京迅为4 天前
RK3568驱动指南|第十六篇 SPI-第190章 配置模式下寄存器的配置
linux·驱动开发·嵌入式硬件·rk3568
宁静致远20214 天前
【正点原子MP157连载】第十九章 Buildroot根文件系统构建-摘自【正点原子】STM32MP1嵌入式Linux驱动开发指南V1.7
linux·驱动开发·stm32