【计算机视觉】基于OpenCV的直线检测

直线检测原理

霍夫变换是图像处理必然接触到的一个算法,它通过一种投票算法检测具有特定形状的物体,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果,该方法可以进行圆,直线,椭圆等形状的检测。在车道线检测中,当初考虑的一个方案便是采用霍夫变换检测直线进行车道线提取。

x,y坐标系中直线上的一个点对应到ρ,θ坐标系中是一条曲线。

x,y坐标系中直线上的所有点在ρ,θ坐标系中对应的所有曲线交汇到一个点上。

ρ,θ坐标系中的一个点对应x,y坐标系中的一条直线。

使用opencv进行直线检测

在使用霍夫变换侦测直线前,须先利用边缘检测算法来减少图像的数据量、剔掉不相关的信息,保留图像中重要的结构特征。

2.1 图像灰度化

python 复制代码
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

原始图像与灰度化的图像如下:

2.2 边缘检测

利用边缘检测算法(Canny、Sobel、Laplacian等)来检测物体边缘,代码如下:

python 复制代码
canny = cv2.Canny(gray_img, 30, 150)

2.3 霍夫变换

使用霍夫变换来得出直线检测结果,代码如下:

python 复制代码
# 使用HoughLinesP检测线段
lines = cv2.HoughLinesP(canny, 1, np.pi / 180, 180, minLineLength=100, maxLineGap=10)

# 检查是否检测到线段
if lines is not None:
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('original', img)

2.4 完整代码

python 复制代码
import cv2
import numpy as np

img = cv2.imread("Resources/img_1.png")

cv2.imshow("Output",img)
cv2.waitKey(0)

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray_img)
cv2.waitKey(0)

canny = cv2.Canny(gray_img, 30, 150)
cv2.imshow('canny', canny)
cv2.waitKey(0)

# 使用HoughLinesP检测线段
lines = cv2.HoughLinesP(canny, 1, np.pi / 180, 180, minLineLength=100, maxLineGap=10)

# 检查是否检测到线段
if lines is not None:
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('original', img)

cv2.waitKey(0)
相关推荐
这张生成的图像能检测吗15 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘16 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw0518 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_9416233220 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛20 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI21 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus21 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声21 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API21 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr