讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习方法,用于将数据集分为K个不同的类。该算法的步骤如下:

  1. 初始化K个聚类中心,可以随机选择或者根据数据集进行选择。

  2. 对于每个数据点,计算其与每个聚类中心的距离,并将该数据点分配到距离最近的聚类中心所在的类别。

  3. 更新每个聚类中心的位置为其所在类别所有数据点的平均值。

  4. 重复步骤2和步骤3,直到达到收敛条件。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。

  2. 对大规模数据集有较好的可扩展性。

  3. 结果可解释性较好,即每个聚类中心代表一个类别。

  4. 对于球状的聚类较为有效。

然而,K-均值聚类算法也有一些缺点:

  1. 需要提前指定聚类数量K,这通常需要先验知识或者试错。

  2. 对于非球状的聚类形状效果不佳,容易受到初始聚类中心的选择影响。

  3. 对于噪声和离群点较为敏感,可能会导致错误的聚类结果。

  4. 由于局部最优解的存在,结果可能会因为初始聚类中心的选择而不稳定。

为了解决K-均值聚类的缺点,还有一些改进的算法,如谱聚类、层次聚类和DBSCAN等。

相关推荐
AI量化投资实验室2 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习
我不是QI2 小时前
DES 加密算法:核心组件、加解密流程与安全特性
经验分享·算法·安全·网络安全·密码学
前端小刘哥2 小时前
新版视频直播点播EasyDSS平台,让跨团队沟通高效又顺畅
算法
明月(Alioo)3 小时前
机器学习入门,无监督学习之K-Means聚类算法完全指南:面向Java开发者的Python实现详解
python·算法·机器学习
叶梅树3 小时前
从零构建A股量化交易工具:基于Qlib的全栈系统指南
前端·后端·算法
深度之眼3 小时前
【Nature高分思路速递】 物理驱动的机器学习
人工智能·机器学习·pinn
lingran__3 小时前
算法沉淀第三天(统计二进制中1的个数 两个整数二进制位不同个数)
c++·算法
胖达不服输3 小时前
「日拱一码」105 机器学习原子间势能MLIP
人工智能·机器学习·机器学习原子间势能·mlip
MicroTech20253 小时前
微算法科技MLGO推出隐私感知联合DNN模型部署和分区优化技术,开启协作边缘推理新时代
科技·算法·dnn
小冯记录编程4 小时前
深入解析C++ for循环原理
开发语言·c++·算法