讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习方法,用于将数据集分为K个不同的类。该算法的步骤如下:

  1. 初始化K个聚类中心,可以随机选择或者根据数据集进行选择。

  2. 对于每个数据点,计算其与每个聚类中心的距离,并将该数据点分配到距离最近的聚类中心所在的类别。

  3. 更新每个聚类中心的位置为其所在类别所有数据点的平均值。

  4. 重复步骤2和步骤3,直到达到收敛条件。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。

  2. 对大规模数据集有较好的可扩展性。

  3. 结果可解释性较好,即每个聚类中心代表一个类别。

  4. 对于球状的聚类较为有效。

然而,K-均值聚类算法也有一些缺点:

  1. 需要提前指定聚类数量K,这通常需要先验知识或者试错。

  2. 对于非球状的聚类形状效果不佳,容易受到初始聚类中心的选择影响。

  3. 对于噪声和离群点较为敏感,可能会导致错误的聚类结果。

  4. 由于局部最优解的存在,结果可能会因为初始聚类中心的选择而不稳定。

为了解决K-均值聚类的缺点,还有一些改进的算法,如谱聚类、层次聚类和DBSCAN等。

相关推荐
郝学胜-神的一滴13 分钟前
计算机图形中的法线矩阵:深入理解与应用
开发语言·程序人生·线性代数·算法·机器学习·矩阵·个人开发
m0_5913389133 分钟前
day8鹏哥C语言--函数
c语言·开发语言·算法
_OP_CHEN36 分钟前
算法基础篇:(二)基础算法之高精度:突破数据极限
算法·acm·算法竞赛·高精度算法·oj题
一只老丸38 分钟前
HOT100题打卡第30天——技巧
算法
青云交44 分钟前
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证
java·随机森林·机器学习·lstm·压力测试·联邦学习·金融风险
Bi_BIT1 小时前
代码随想录训练营打卡Day38| 动态规划part06
算法·动态规划
手握风云-1 小时前
回溯剪枝的“减法艺术”:化解超时危机的 “救命稻草”(三)
算法·剪枝
元亓亓亓1 小时前
LeetCode热题100--46. 全排列--中等
算法·leetcode·职场和发展
Khunkin2 小时前
基于几何直觉理解牛顿迭代法
机器学习
快手技术2 小时前
从“拦路虎”到“修路工”:基于AhaEdit的广告素材修复
前端·算法·架构