讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种无监督学习方法,用于将数据集分为K个不同的类。该算法的步骤如下:

  1. 初始化K个聚类中心,可以随机选择或者根据数据集进行选择。

  2. 对于每个数据点,计算其与每个聚类中心的距离,并将该数据点分配到距离最近的聚类中心所在的类别。

  3. 更新每个聚类中心的位置为其所在类别所有数据点的平均值。

  4. 重复步骤2和步骤3,直到达到收敛条件。

K-均值聚类算法的优点包括:

  1. 算法简单且易于实现。

  2. 对大规模数据集有较好的可扩展性。

  3. 结果可解释性较好,即每个聚类中心代表一个类别。

  4. 对于球状的聚类较为有效。

然而,K-均值聚类算法也有一些缺点:

  1. 需要提前指定聚类数量K,这通常需要先验知识或者试错。

  2. 对于非球状的聚类形状效果不佳,容易受到初始聚类中心的选择影响。

  3. 对于噪声和离群点较为敏感,可能会导致错误的聚类结果。

  4. 由于局部最优解的存在,结果可能会因为初始聚类中心的选择而不稳定。

为了解决K-均值聚类的缺点,还有一些改进的算法,如谱聚类、层次聚类和DBSCAN等。

相关推荐
颜酱9 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919109 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878389 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz9 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女10 小时前
TRSV优化2
算法
九河云10 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
代码游侠11 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_7634724611 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy11 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异12 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展