【深度学习】如何选择适合你的模型训练方法:Fine Tuning、DreamBooth、LoRA与Textual Inversion详细指南

https://github.com/bmaltais/kohya_ss/blob/master/docs/train_README-zh.md

四种训练方法各有其特点和适用场景,下面详细介绍每种方法及其区别:

1. Fine Tuning 微调

脚本: fine_tune.py

特点:

  • 数据准备: 需要为每张训练图像准备对应的描述文件(caption),并将这些描述整合到元数据文件中。
  • 正则化图像: 不使用正则化图像。
  • 应用场景: 适用于大量训练数据并希望模型学习图像和文本描述之间的精确关系。
  • 优势: 可以将角色和其他元素分离,并且训练结果较为准确。

2. DreamBooth 训练

脚本: train_db.py

分为两种方法:

  1. Class + Identifier 方式

    特点:

    • 数据准备: 只需要为每个图像指定一个标识符和类,不需要单独的描述文件。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 适用于不希望为每张图像准备描述文件的场景,如学习特定角色。
    • 优势: 数据准备简单,但所有训练数据的元素都会与标识符相关联。
  2. Caption 方式

    特点:

    • 数据准备: 为每张训练图像准备一个描述文件(caption)。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 希望模型能够区分不同元素,如角色、服装、背景等。
    • 优势: 更准确地学习角色和其他元素的关系。

3. LoRA (Low-Rank Adaptation)

脚本: train_network.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望在已有模型的基础上,通过少量新数据微调模型,使其适应新任务。
  • 优势: 效率高,适合资源有限的情况。

4. Textual Inversion 文本倒装

脚本: train_textual_inversion.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望通过少量文本描述提升模型在特定任务上的表现。
  • 优势: 训练过程简洁,能快速调整模型对特定文本描述的生成效果。

总结表格

训练对象或方法 脚本 DB/class+identifier DB/caption fine tuning
微调模型 fine_tune.py X X o
DreamBooth训练模型 train_db.py o o X
LoRA train_network.py o o o
Textual Inversion train_textual_inversion.py o o o

选择指南

  1. 如果不希望准备图像描述文件:

    • 使用 DreamBooth 的 Class + Identifier 方式。
  2. 如果可以准备描述文件,希望更精确的训练:

    • 使用 DreamBooth 的 Caption 方式。
  3. 如果有大量训练数据且不需要正则化图像:

    • 使用 Fine Tuning 方法。
  4. 如果希望在已有模型基础上进行少量数据微调:

    • 使用 LoRA 方式。
  5. 如果希望通过文本描述提升模型特定任务表现:

    • 使用 Textual Inversion 方法。

这些方法根据不同的需求和数据准备方式提供了灵活的训练选项,选择适合自己的方法可以更有效地进行模型微调和训练。

相关推荐
说私域12 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的社群运营创新研究
人工智能·小程序·开源
程序员小灰15 分钟前
谷歌AI模型Gemini 3.0 Pro,已经杀疯了!
人工智能·aigc·gemini
杨浦老苏24 分钟前
AI驱动的图表生成器Next-AI-Draw.io
人工智能·docker·ai·群晖·draw.io
饭饭大王66635 分钟前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug36 分钟前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome
用户48021517024737 分钟前
Transformer 的技术层面
人工智能
std787939 分钟前
Intel Arrow Lake Refresh迎来DDR5‑7200 CUDIMM支持,提升内存兼容性
人工智能
小喵要摸鱼40 分钟前
【卷积神经网络】卷积层、池化层、全连接层
人工智能·深度学习·cnn
LO嘉嘉VE1 小时前
学习笔记二十一:深度学习
笔记·深度学习·学习
YJlio2 小时前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑