【深度学习】如何选择适合你的模型训练方法:Fine Tuning、DreamBooth、LoRA与Textual Inversion详细指南

https://github.com/bmaltais/kohya_ss/blob/master/docs/train_README-zh.md

四种训练方法各有其特点和适用场景,下面详细介绍每种方法及其区别:

1. Fine Tuning 微调

脚本: fine_tune.py

特点:

  • 数据准备: 需要为每张训练图像准备对应的描述文件(caption),并将这些描述整合到元数据文件中。
  • 正则化图像: 不使用正则化图像。
  • 应用场景: 适用于大量训练数据并希望模型学习图像和文本描述之间的精确关系。
  • 优势: 可以将角色和其他元素分离,并且训练结果较为准确。

2. DreamBooth 训练

脚本: train_db.py

分为两种方法:

  1. Class + Identifier 方式

    特点:

    • 数据准备: 只需要为每个图像指定一个标识符和类,不需要单独的描述文件。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 适用于不希望为每张图像准备描述文件的场景,如学习特定角色。
    • 优势: 数据准备简单,但所有训练数据的元素都会与标识符相关联。
  2. Caption 方式

    特点:

    • 数据准备: 为每张训练图像准备一个描述文件(caption)。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 希望模型能够区分不同元素,如角色、服装、背景等。
    • 优势: 更准确地学习角色和其他元素的关系。

3. LoRA (Low-Rank Adaptation)

脚本: train_network.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望在已有模型的基础上,通过少量新数据微调模型,使其适应新任务。
  • 优势: 效率高,适合资源有限的情况。

4. Textual Inversion 文本倒装

脚本: train_textual_inversion.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望通过少量文本描述提升模型在特定任务上的表现。
  • 优势: 训练过程简洁,能快速调整模型对特定文本描述的生成效果。

总结表格

训练对象或方法 脚本 DB/class+identifier DB/caption fine tuning
微调模型 fine_tune.py X X o
DreamBooth训练模型 train_db.py o o X
LoRA train_network.py o o o
Textual Inversion train_textual_inversion.py o o o

选择指南

  1. 如果不希望准备图像描述文件:

    • 使用 DreamBooth 的 Class + Identifier 方式。
  2. 如果可以准备描述文件,希望更精确的训练:

    • 使用 DreamBooth 的 Caption 方式。
  3. 如果有大量训练数据且不需要正则化图像:

    • 使用 Fine Tuning 方法。
  4. 如果希望在已有模型基础上进行少量数据微调:

    • 使用 LoRA 方式。
  5. 如果希望通过文本描述提升模型特定任务表现:

    • 使用 Textual Inversion 方法。

这些方法根据不同的需求和数据准备方式提供了灵活的训练选项,选择适合自己的方法可以更有效地进行模型微调和训练。

相关推荐
万少1 分钟前
喜大普奔 DevEco Studio 官方接 入 DeepSeek 了
人工智能·harmonyos·ai 编程
zsmydz8883 分钟前
摩托车PKE感应一键启动智能安全双防护
人工智能·科技·汽车·生活·摩托车一键启动
机器学习社区4 分钟前
QwQ-32B 开源!本地部署+微调教程来了
深度学习·算法·面试·大模型·面试题
Wis4e9 分钟前
基于PyTorch的深度学习3——非标量反向传播
人工智能·pytorch·深度学习
是刃小木啦~11 分钟前
3D空间曲线批量散点化软件V1.0正式发布,将空间线条导出坐标点,SolidWorks/UG/Catia等三维软件通用
c++·人工智能·pyqt
love_c++14 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
清 澜19 分钟前
相机几何:从三维世界到二维图像的映射
图像处理·人工智能·计算机视觉·3d
lihuayong25 分钟前
深度学习模型Transformer核心组件—前馈网络FFN
人工智能·深度学习·transformer·全链接层·前馈网络·feed-forward
说私域26 分钟前
定制开发开源AI智能名片S2B2C商城小程序:以“晒”为桥,构建信任,助力社交新零售飞跃
人工智能·小程序·零售
Shockang28 分钟前
假设检验与置信区间在机器学习中的应用
人工智能·数学·机器学习·概率统计