【深度学习】如何选择适合你的模型训练方法:Fine Tuning、DreamBooth、LoRA与Textual Inversion详细指南

https://github.com/bmaltais/kohya_ss/blob/master/docs/train_README-zh.md

四种训练方法各有其特点和适用场景,下面详细介绍每种方法及其区别:

1. Fine Tuning 微调

脚本: fine_tune.py

特点:

  • 数据准备: 需要为每张训练图像准备对应的描述文件(caption),并将这些描述整合到元数据文件中。
  • 正则化图像: 不使用正则化图像。
  • 应用场景: 适用于大量训练数据并希望模型学习图像和文本描述之间的精确关系。
  • 优势: 可以将角色和其他元素分离,并且训练结果较为准确。

2. DreamBooth 训练

脚本: train_db.py

分为两种方法:

  1. Class + Identifier 方式

    特点:

    • 数据准备: 只需要为每个图像指定一个标识符和类,不需要单独的描述文件。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 适用于不希望为每张图像准备描述文件的场景,如学习特定角色。
    • 优势: 数据准备简单,但所有训练数据的元素都会与标识符相关联。
  2. Caption 方式

    特点:

    • 数据准备: 为每张训练图像准备一个描述文件(caption)。
    • 正则化图像: 可使用正则化图像。
    • 应用场景: 希望模型能够区分不同元素,如角色、服装、背景等。
    • 优势: 更准确地学习角色和其他元素的关系。

3. LoRA (Low-Rank Adaptation)

脚本: train_network.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望在已有模型的基础上,通过少量新数据微调模型,使其适应新任务。
  • 优势: 效率高,适合资源有限的情况。

4. Textual Inversion 文本倒装

脚本: train_textual_inversion.py

特点:

  • 数据准备: 既可以使用 Class + Identifier 方式,也可以使用 Caption 方式。
  • 正则化图像: 可使用正则化图像。
  • 应用场景: 适用于希望通过少量文本描述提升模型在特定任务上的表现。
  • 优势: 训练过程简洁,能快速调整模型对特定文本描述的生成效果。

总结表格

训练对象或方法 脚本 DB/class+identifier DB/caption fine tuning
微调模型 fine_tune.py X X o
DreamBooth训练模型 train_db.py o o X
LoRA train_network.py o o o
Textual Inversion train_textual_inversion.py o o o

选择指南

  1. 如果不希望准备图像描述文件:

    • 使用 DreamBooth 的 Class + Identifier 方式。
  2. 如果可以准备描述文件,希望更精确的训练:

    • 使用 DreamBooth 的 Caption 方式。
  3. 如果有大量训练数据且不需要正则化图像:

    • 使用 Fine Tuning 方法。
  4. 如果希望在已有模型基础上进行少量数据微调:

    • 使用 LoRA 方式。
  5. 如果希望通过文本描述提升模型特定任务表现:

    • 使用 Textual Inversion 方法。

这些方法根据不同的需求和数据准备方式提供了灵活的训练选项,选择适合自己的方法可以更有效地进行模型微调和训练。

相关推荐
帅次几秒前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ28 分钟前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用32 分钟前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小41 分钟前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV41 分钟前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人
cwn_1 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
聚客AI1 小时前
🔥 大模型开发进阶:基于LangChain的异步流式响应与性能优化
人工智能·langchain·agent
CareyWYR2 小时前
每周AI论文速递(250707-250711)
人工智能
AI街潜水的八角2 小时前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类
众链网络2 小时前
AI进化论08:机器学习的崛起——数据和算法的“二人转”,AI“闷声发大财”
人工智能·算法·机器学习