昇思第8天

保存与加载

保存模型使用save_checkpoint接口,传入网络和指定的保存路径

要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint和load_param_into_net方法加载参数。

使用静态图加速

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。

python 复制代码
import mindspore as ms
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

错误:

清理内存:

结果:

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。

使用Graph模式设置

注意:静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

python 复制代码
@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)

函数变换方式调用jit方法

ruby 复制代码
def run(x):
    model = Network()
    return model(x)

run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行

基于context的开启方式


相关推荐
CoovallyAIHub40 分钟前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
CoovallyAIHub7 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub7 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
AI小云2 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制