昇思第8天

保存与加载

保存模型使用save_checkpoint接口,传入网络和指定的保存路径

要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint和load_param_into_net方法加载参数。

使用静态图加速

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。

python 复制代码
import mindspore as ms
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

错误:

清理内存:

结果:

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。

使用Graph模式设置

注意:静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

python 复制代码
@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)

函数变换方式调用jit方法

ruby 复制代码
def run(x):
    model = Network()
    return model(x)

run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行

基于context的开启方式


相关推荐
空白到白9 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
水凌风里10 分钟前
4.4 机器学习 - 集成学习
人工智能·机器学习·集成学习
雲_kumo10 分钟前
集成学习:从理论到实践的全面解析
人工智能·机器学习·集成学习
CoovallyAIHub36 分钟前
SBP-YOLO:面向嵌入式悬架的轻量实时模型,实现减速带与坑洼高精度检测
深度学习·算法·计算机视觉
i.ajls1 小时前
无监督学习,推荐系统以及强化学习笔记
笔记·学习·机器学习
CoovallyAIHub1 小时前
医药、零件、饮料瓶盖……SuperSimpleNet让质检“即插即用”
深度学习·算法·计算机视觉
跳跳糖炒酸奶1 小时前
第六章、从transformer到nlp大模型:编码器-解码器模型 (Encoder-Decoder)
深度学习·自然语言处理·transformer
胖达不服输2 小时前
「日拱一码」081 机器学习——梯度增强特征选择GBFS
人工智能·python·算法·机器学习·梯度增强特征选择·gbfs
大千AI助手2 小时前
VeRL:强化学习与大模型训练的高效融合框架
人工智能·深度学习·神经网络·llm·强化学习·verl·字节跳动seed
初级炼丹师(爱说实话版)2 小时前
2025算法八股——深度学习——优化器小结
人工智能·深度学习·算法