昇思第8天

保存与加载

保存模型使用save_checkpoint接口,传入网络和指定的保存路径

要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint和load_param_into_net方法加载参数。

使用静态图加速

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。

python 复制代码
import mindspore as ms
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

错误:

清理内存:

结果:

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。

使用Graph模式设置

注意:静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

python 复制代码
@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)

函数变换方式调用jit方法

ruby 复制代码
def run(x):
    model = Network()
    return model(x)

run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行

基于context的开启方式


相关推荐
少林码僧4 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)4 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了4 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好4 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo5 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
AI产品备案5 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
wm10435 小时前
机器学习之线性回归
人工智能·机器学习·线性回归
sonadorje6 小时前
逻辑回归中的条件概率
算法·机器学习·逻辑回归
黑客思维者7 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
北山小恐龙7 小时前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer