【大语言模型系列之Transformer】

🎥博主:程序员不想YY啊
💫CSDN优质创作者,CSDN实力新星,CSDN博客专家
🤗点赞🎈收藏⭐再看💫养成习惯
✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

🪽Transformer

🦖Transformer是一种用于自然语言处理任务的重要神经网络架构。它最初是由Vaswani等人在2017年提出的,并在机器翻译任务中取得了显著的突破。

🦖传统的循环神经网络(RNN)在处理长距离依赖性时存在困难,而Transformer则通过引入自注意力机制(Self-Attention)来解决这个问题。

🦖Transformer的核心思想是将输入序列映射到多个表示子空间(多头注意力)中,以便在每个子空间中独立地计算注意力。自注意力机制使得Transformer能够同时关注输入序列中的所有位置,而不像传统的序列模型那样依赖于逐个位置的处理。

🦖Transformer还使用了残差连接和层归一化,这些技术有助于提高模型的训练效果和表达能力。此外,Transformer还使用了位置编码来捕捉输入序列的位置信息。

🦖Transformer在机器翻译、文本生成、问答系统等自然语言处理任务上取得了很好的效果,并且逐渐成为该领域的主流模型。它的高效并行计算特性也使得它易于扩展到大规模的训练数据和模型规模。

🦖总结起来,Transformer作为一种基于自注意力机制的神经网络架构,通过并行计算和多头注意力的设计,能够有效处理自然语言处理任务中的长距离依赖性,并取得了很好的效果。

相关推荐
高洁0114 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
sinat_2869451918 小时前
AI Coding LSP
人工智能·算法·prompt·transformer
机器学习之心18 小时前
Transformer-BiLSTM、Transformer、CNN-BiLSTM、BiLSTM、CNN五模型分类预测Matlab实现
cnn·transformer·cnn-bilstm·bilstm
果粒蹬i21 小时前
当CNN遇见Transformer:混合模型的特征可视化与融合攻略
人工智能·cnn·transformer
北山小恐龙1 天前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer
机器学习之心2 天前
Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量分类预测Matlab实现
cnn·lstm·transformer
Blossom.1182 天前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer
小明_GLC2 天前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer
没学上了2 天前
VLM—Transformer
人工智能·深度学习·transformer
悟道心2 天前
6. 自然语言处理NLP - 迁移学习
人工智能·transformer