R可视化:好看的气泡图

加载R包

R 复制代码
library(tidyverse)
library(camcorder)

gg_record(dir = "tidytuesday-temp", device = "png", width = 8, height = 8, units = "in", dpi = 320)

导入数据

R 复制代码
team_results <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2024/2024-03-26/team-results.csv') %>% 
  janitor::clean_names()

数据预处理

R 复制代码
f1 <- "Graphik"
f1b <- "Graphik Compact"
f2 <- "Produkt"
f2b <- "Produkt Medium"  


pal <- MetBrewer::met.brewer("Homer2")

tr <- team_results %>% 
  mutate(
    f4percent = parse_number(f4percent),
    champpercent = parse_number(champpercent)
  ) 

画图

R 复制代码
ggplot(tr, aes(pake, pase, label = str_wrap(team, 12))) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_abline(linetype = "dotted") +
  geom_point(aes(size = champpercent, color = f4percent), alpha = 0.7) +
  shadowtext::geom_shadowtext(data = . %>% filter(champpercent > 33), nudge_y = -0.5, family = f1b, color = "black", bg.color = "white", size = 4.5, lineheight = 0.9) +
  scale_color_stepsn(colors = pal) +
  scale_size_area(max_size = 10) +
  coord_fixed() +
  guides(
    size = guide_legend(reverse = TRUE, override.aes = list(color = pal[4])),
    color = guide_colorsteps(show.limits = TRUE)
    ) +
  labs(
    x = "Performance Against KenPom Expectation (PAKE)",
    y = "Performance Against Seed Expectation (PASE)",
    color = "Likelihood of getting to\nat least 1 Final Four",
    size = "Likelihood of winning\nat least 1 Championship",
    title = "NCAA Men's March Madness: Performance vs. Expectations",
    subtitle = "Data for 236 teams, from 2008 to 2024. The 2020 tournament was canceled due to Covid-19",
    caption = "Source: Nishaan Amin · Graphic: Georgios Karamanis"
  ) +
  theme_minimal(base_family = f1) +
  theme(
    legend.position = c(0.72, 0.13),
    legend.title = element_text(hjust = 1, margin = margin(0, 0, 10, 0)),
    legend.box = "horizontal",
    legend.key.width = unit(0.8, "line"),
    plot.background = element_rect(fill = "grey99", color = NA),
    plot.title = element_text(face = "bold"),
    plot.margin = margin(10, 10, 10, 10))
相关推荐
饭九钦vlog2 天前
一键配置kali脚本
r语言
维维180-3121-14553 天前
从入门到精通:R语言结构方程模型(SEM)在生态学研究中的全面应用
r语言·生态·环境·农业·林业
Teacher.chenchong4 天前
R语言实现物种分布预测与生态位分析:多元算法实现物种气候生态位动态分析与分布预测,涵盖数据清洗、模型评价到论文写作全流程
开发语言·算法·r语言
AAIshangyanxiu4 天前
基于R语言的物种气候生态位动态量化与分布特征模拟-组合物种分布模型(Ensemble Species Distribution Model)
r语言·物种分布·物种气候生态位·物种气候
云和数据.ChenGuang5 天前
r=re.search(r‘data-original=“(.*?)“‘, line)指令解析
数据库·mysql·r语言
2301_783360135 天前
R语言机器学习系列|随机森林模型特征重要性排序的R语言实现
随机森林·机器学习·r语言
维维180-3121-14555 天前
R语言物种分布建模:算法比较、生态位量化与论文图表制作
r语言·生态学·环境·农业·林业·生物地理
小艳加油5 天前
生态学研究突破:利用R语言多元算法实现物种气候生态位动态分析与分布预测,涵盖数据清洗、模型评价到论文写作全流程
开发语言·算法·r语言
2301_783360138 天前
R语言 | 带重要性相关热图和贡献图如何解释?如何绘制随机森林计算结果重要性及相关性图?[学习笔记]
学习·随机森林·r语言