R可视化:好看的气泡图

加载R包

R 复制代码
library(tidyverse)
library(camcorder)

gg_record(dir = "tidytuesday-temp", device = "png", width = 8, height = 8, units = "in", dpi = 320)

导入数据

R 复制代码
team_results <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2024/2024-03-26/team-results.csv') %>% 
  janitor::clean_names()

数据预处理

R 复制代码
f1 <- "Graphik"
f1b <- "Graphik Compact"
f2 <- "Produkt"
f2b <- "Produkt Medium"  


pal <- MetBrewer::met.brewer("Homer2")

tr <- team_results %>% 
  mutate(
    f4percent = parse_number(f4percent),
    champpercent = parse_number(champpercent)
  ) 

画图

R 复制代码
ggplot(tr, aes(pake, pase, label = str_wrap(team, 12))) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_abline(linetype = "dotted") +
  geom_point(aes(size = champpercent, color = f4percent), alpha = 0.7) +
  shadowtext::geom_shadowtext(data = . %>% filter(champpercent > 33), nudge_y = -0.5, family = f1b, color = "black", bg.color = "white", size = 4.5, lineheight = 0.9) +
  scale_color_stepsn(colors = pal) +
  scale_size_area(max_size = 10) +
  coord_fixed() +
  guides(
    size = guide_legend(reverse = TRUE, override.aes = list(color = pal[4])),
    color = guide_colorsteps(show.limits = TRUE)
    ) +
  labs(
    x = "Performance Against KenPom Expectation (PAKE)",
    y = "Performance Against Seed Expectation (PASE)",
    color = "Likelihood of getting to\nat least 1 Final Four",
    size = "Likelihood of winning\nat least 1 Championship",
    title = "NCAA Men's March Madness: Performance vs. Expectations",
    subtitle = "Data for 236 teams, from 2008 to 2024. The 2020 tournament was canceled due to Covid-19",
    caption = "Source: Nishaan Amin · Graphic: Georgios Karamanis"
  ) +
  theme_minimal(base_family = f1) +
  theme(
    legend.position = c(0.72, 0.13),
    legend.title = element_text(hjust = 1, margin = margin(0, 0, 10, 0)),
    legend.box = "horizontal",
    legend.key.width = unit(0.8, "line"),
    plot.background = element_rect(fill = "grey99", color = NA),
    plot.title = element_text(face = "bold"),
    plot.margin = margin(10, 10, 10, 10))
相关推荐
wyw00006 小时前
目标检测之Fast R-CNN
目标检测·r语言·cnn
kisshuan123962 天前
【深度学习】【目标检测】基于Mask R-CNN的鱼类尾巴检测与识别
深度学习·目标检测·r语言
开开心心就好2 天前
系统管理工具,多功能隐私清理文件粉碎工具
java·网络·windows·r语言·电脑·excel·symfony
kisshuan123963 天前
【植物图像分析系列】:基于Cascade R-CNN的叶片气孔状态识别与分类任务详解_1
分类·r语言·cnn
Tiger Z5 天前
《R for Data Science (2e)》免费中文翻译 (第17章) --- Dates and times(1)
r语言·编程·数据科学
杜子不疼.6 天前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
Davina_yu6 天前
Windows 下升级 R 语言至最新版
开发语言·windows·r语言
青春不败 177-3266-05207 天前
基于R语言生物信息学大数据分析与绘图技术应用
数据分析·r语言·生物信息·生信·高通量
Catherinemin7 天前
【R语言】2.注释&基础运算
开发语言·r语言
邢博士谈科教7 天前
TCGA单基因高低分组的差异分析后的GSEA-GO和KEGG富集分析教程
数据分析·r语言