LLM - 神经网络的训练过程

  1. 对于回归问题,用损失函数来计算预测值和真实值的差异,一种常用的公式是如下图所示(Mean Square Error),如果损失函数的值越小说明神经网络学习越准确,所以神经网络训练目标是减小损失函数的值,
  1. 对于分类问题,损失函数和上面不一样,这里使用交叉熵作为损失函数,神经网络训练目标是最小化交叉熵。
  1. 最小化损失函数的方法(梯度下降法),即将优化步骤拆分成若干个步骤,每次对损失函数的值做小幅缩小,具体过程是对损失函数求该模型参数的梯度,每次迭代对向着梯度变化最快的方向前进一步(这样就可以计算出模型参数,并在此轮迭代后更新模型参数),这样就可以使损失函数值降低一点,每次前进一步的步长称为学习率。
  1. 回归问题的梯度求解过程:输出是标量F(x), 输入是[x1,x2,...xn], 对输入求偏导,得到的向量是梯度。
  1. 分类问题的梯度求解过程:输出是向量F(X),有多个输出,让每个输出对输入变量X[x1,x2,..xn]求微分,得到的jacobian矩阵是梯度
  1. 求微分时的链式法则:

7.求微分实例:

8.在实际深度学习场景中,对每个参数梯度计算是通过反向传播算法实现的。

9.单个节点梯度的计算过程: downstream_gradient = upstream_gradient * local_gradient****这个公式在实际写算子时会用到。

相关推荐
前端双越老师1 分钟前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子17 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger35 分钟前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼37 分钟前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20063 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3934 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水8 小时前
Unreal Engine 5中的AI知识
人工智能