LLM - 神经网络的训练过程

  1. 对于回归问题,用损失函数来计算预测值和真实值的差异,一种常用的公式是如下图所示(Mean Square Error),如果损失函数的值越小说明神经网络学习越准确,所以神经网络训练目标是减小损失函数的值,
  1. 对于分类问题,损失函数和上面不一样,这里使用交叉熵作为损失函数,神经网络训练目标是最小化交叉熵。
  1. 最小化损失函数的方法(梯度下降法),即将优化步骤拆分成若干个步骤,每次对损失函数的值做小幅缩小,具体过程是对损失函数求该模型参数的梯度,每次迭代对向着梯度变化最快的方向前进一步(这样就可以计算出模型参数,并在此轮迭代后更新模型参数),这样就可以使损失函数值降低一点,每次前进一步的步长称为学习率。
  1. 回归问题的梯度求解过程:输出是标量F(x), 输入是[x1,x2,...xn], 对输入求偏导,得到的向量是梯度。
  1. 分类问题的梯度求解过程:输出是向量F(X),有多个输出,让每个输出对输入变量X[x1,x2,..xn]求微分,得到的jacobian矩阵是梯度
  1. 求微分时的链式法则:

7.求微分实例:

8.在实际深度学习场景中,对每个参数梯度计算是通过反向传播算法实现的。

9.单个节点梯度的计算过程: downstream_gradient = upstream_gradient * local_gradient****这个公式在实际写算子时会用到。

相关推荐
小鸡吃米…8 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫9 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)9 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan9 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维9 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS9 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd9 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟10 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然10 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~10 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1