[深度学习]卷积理解

单通道卷积

看这个的可视化就很好理解了

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

多通道卷积

当输入有多个通道时,卷积核需要拥有相同的通道数. 假设输入有c个通道,那么卷积核的每个通道分别于相应的输入数据通道进行卷积,然后将得到的特征图对应元素相加,最终输出一个单通道的特征图, 它的数学表达式如下图所示.

一些概念

卷积核个数: 一个卷积核对应输入图像某一个特征,理论上卷积核数量越多,能够提取的特征越丰富.

待补充:

3d卷积

相关推荐
橡晟4 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子4 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01054 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
Leah01055 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
九章云极AladdinEdu8 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力
嘗_11 小时前
机器学习/深度学习训练day1
人工智能·深度学习·机器学习
墨尘游子12 小时前
一文读懂循环神经网络(RNN)—语言模型+n元语法(1)
人工智能·python·rnn·深度学习·神经网络·语言模型
墨尘游子13 小时前
一文读懂循环神经网络(RNN)—语言模型+读取长序列数据(2)
人工智能·python·深度学习
点云SLAM13 小时前
PyTorch张量(Tensor)创建的方式汇总详解和代码示例
人工智能·pytorch·python·深度学习·机器学习·张量创建方式
AndrewHZ13 小时前
【图像处理基石】什么是色盲仿真技术?
图像处理·人工智能·pytorch·深度学习·计算机视觉·颜色科学·hvs