从打印到监测:纳米生物墨水助力3D生物打印与组织监测平台?

从打印到监测:纳米生物墨水助力3D生物打印与组织监测平台?

在 3D 组织工程中,纳米生物墨水是将纳米材料与 ECM 水凝胶结合,以提高其打印性和功能性的重要策略。纳米生物墨水可以增强水凝胶的机械性能、导电性、生物活性,并赋予其特定的功能,例如药物递送、组织再生和细胞控制。

1 基于胶原蛋白和壳聚糖的纳米生物墨水和工程组织

胶原蛋白基纳米生物墨水: 胶原蛋白是肌肉 TE 中的常用材料,但需要改进其电导率和机械性能。通过将纳米金线 (GNWs) 掺入胶原蛋白基纳米生物墨水中,可以产生拓扑线索,加速肌细胞的排列,并模仿肌肉组织的电学特性。此外,通过添加碳纳米管 (CNTs) 可以增强胶原蛋白基纳米生物墨水的机械强度和电导率,并创建类似血管的结构。

壳聚糖基纳米生物墨水: 壳聚糖具有良好的生物相容性和抗菌活性,但其溶解度有限,限制了其应用。通过将纳米羟基磷灰石 (nHAp) 掺入壳聚糖基纳米生物墨水中,可以增强其机械强度和生物矿化特性,并用于构建骨骼组织。此外,通过将纳米硅酸盐 (Laponite®) 掺入壳聚糖基纳米生物墨水中,可以提高其打印性和生物活性,并用于构建血管和骨组织。

2 基于明胶 /GelMA 的纳米生物墨水和工程组织

明胶/GelMA基纳米生物墨水: 明胶具有许多优异的特性,例如良好的生物相容性、低抗原性和支持细胞粘附和增殖;然而,其机械强度有限,限制了其在特定组织中的应用。通过将纳米纤维素材料(如纤维素纳米晶体 (CNCs) 和纳米纤维 (CNFs))掺入明胶/GelMA 基纳米生物墨水中,可以增强其机械强度和打印性。此外,通过将nHAp掺入GelMA中,可以增强其生物矿化和机械性能,并用于构建骨骼和软骨组织。

电活性组织: 电活性组织(如心肌细胞和骨骼肌细胞)需要导电的生物墨水来模拟天然 ECM 环境。通过将碳纳米管 (CNPs) 和金纳米线 (GNRs) 等导电纳米材料掺入 GelMA 中,可以增强其电导率,并用于构建电活性组织。

3 基于脱乙酰壳多糖的纳米生物墨水和工程组织

脱乙酰壳多糖基纳米生物墨水: 脱乙酰壳多糖水凝胶由于其低粘度和结构稳定性差,难以维持长期的结构和形状。通过将纳米纤维素纤维 (CNFs) 或聚乳酸 (PLA) 纳米纤维等材料掺入脱乙酰壳多糖基纳米生物墨水中,可以增强其打印性和生物活性,并用于构建脂肪组织和软骨组织。

血管: 通过将碳纳米管 (CNPs) 或多壁碳纳米管 (MWNPs) 等材料掺入算盘子基纳米生物墨水中,可以增强其机械强度和结构稳定性,并用于构建可通血的血管结构。

4 基于透明质酸的纳米生物墨水和工程组织

透明质酸基纳米生物墨水: 透明质酸是一种具有优异水合能力的生物材料,但其机械强度和降解性限制了其在3D生物打印中的应用。通过将纳米纤维素 (CNFs) 或纳米羟基磷灰石 (nHAp) 等材料掺入透明质酸基纳米生物墨水中,可以增强其机械强度和生物活性,并用于构建脂肪组织和骨骼组织。

电活性组织: 通过将二维过渡金属碳化物 (MXene) 纳米片等材料掺入透明质酸基纳米生物墨水中,可以增强其电导率,并用于构建电活性组织。

5 基于丝素蛋白的纳米生物墨水和工程组织

蚕丝素基纳米生物墨水: 蚕丝素水凝胶具有良好的机械强度和结构完整性,但其打印分辨率较低。通过将细菌纤维素纳米纤维 (BCNF) 等纳米纤维掺入蚕丝素/明胶生物墨水中,可以提高其打印分辨率和形状保真度,并用于构建软组织模型。

骨软骨组织: 通过将锶掺杂的纳米磷酸钙 (nHAp) 掺入蚕丝素基纳米生物墨水中,可以增强其骨诱导、软骨诱导和血管诱导特性,并用于构建骨软骨组织。

6 基于脱细胞细胞外基质的纳米生物墨水和工程组织

脱细胞细胞外基质 (dECM) 基纳米生物墨水: dECM水凝胶具有与天然组织相似的复杂结构,但其打印性和结构稳定性较差。通过化学修饰或物理交联来增强dECM水凝胶的机械强度,并使其与纳米材料结合,以改善其打印性和结构完整性。

电活性组: 通过将碳纳米管 (CNPs) 等导电纳米材料掺入dECM水凝胶中,可以增强其电导率,并用于构建电活性组织。

总而言之,纳米生物墨水为3D组织工程提供了新的可能性,通过增强ECM水凝胶的机械性能、导电性、生物活性,并赋予其特定的功能,可以构建更复杂、更功能性的组织结构。随着纳米材料研究和3D打印技术的不断发展,纳米生物墨水将在未来组织工程中发挥重要作用。

参考文献

Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. Nano Converg. 2023 Nov 15;10(1):52.

相关推荐
rocksun5 分钟前
GraphRAG vs. RAG:差异详解
人工智能
一块plus13 分钟前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法
txwtech21 分钟前
第10.4篇 使用预训练的目标检测网络
人工智能·计算机视觉·目标跟踪
羊小猪~~33 分钟前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
roman_日积跬步-终至千里37 分钟前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习
静心问道42 分钟前
APE:大语言模型具有人类水平的提示工程能力
人工智能·算法·语言模型·大模型
zskj_zhyl1 小时前
科技有温度:七彩喜智慧康养平台,为银发生活织就“数字守护网”
人工智能·科技·生活
嘉讯科技HIS系统1 小时前
嘉讯科技:医疗信息化、数字化、智能化三者之间的关系和区别
大数据·数据库·人工智能·科技·智慧医疗
音视频牛哥1 小时前
计算机视觉的新浪潮:扩散模型(Diffusion Models)技术剖析与应用前景
人工智能·计算机视觉·ai·音视频·实时音视频·扩散模型
爆改模型1 小时前
【arXiv2025】计算机视觉|即插即用|LBMamba:革新视觉模型效率,性能炸裂
人工智能·计算机视觉