Apache Hadoop文件上传、下载、分布式计算案例初体验

上篇:Apache Hadoop完全分布式集群搭建无坑指南-CSDN博客

通过上篇,我们搭建了完整的Hadoop集群,此篇我们简单通过集群上传和下载文件,同时测试分布式worldCount案例。后续的篇章再对分布式计算、分布式存储作更深的理解。

上传下载测试

从linux本地文件系统上传下载文件验证HDFS集群工作是否正常

复制代码
#创建目录
hdfs dfs -mkdir -p /test/input

#本地hoome目录创建一个文件,随便写点内容进去
cd /root
vim test.txt
​
#上传linxu文件到Hdfs
hdfs dfs -put /root/test.txt /test/input
​
#从Hdfs下载文件到linux本地(可以换别的节点进行测试)
hdfs dfs -get /test/input/test.txt

分布式计算测试

在HDFS文件系统根目录下面创建一个wcinput文件夹

复制代码
[root@hadoop01 hadoop-2.9.2]# hdfs dfs -mkdir /wcinput

创建wc.txt文件,输入如下内容

复制代码
hadoop mapreduce yarn
hdfs hadoop mapreduce
mapreduce yarn kmning
kmning
kmning

上传wc.txt到Hdfs目录/wcinput下

复制代码
hdfs dfs -put wc.txt /wcinput

执行mapreduce任务

复制代码
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount /wcinput/ /wcoutput

打印如下

复制代码
24/07/03 20:44:26 INFO client.RMProxy: Connecting to ResourceManager at hadoop03/192.168.43.103:8032
24/07/03 20:44:28 INFO input.FileInputFormat: Total input files to process : 1
24/07/03 20:44:28 INFO mapreduce.JobSubmitter: number of splits:1
24/07/03 20:44:28 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
24/07/03 20:44:29 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1720006717389_0001
24/07/03 20:44:29 INFO impl.YarnClientImpl: Submitted application application_1720006717389_0001
24/07/03 20:44:29 INFO mapreduce.Job: The url to track the job: http://hadoop03:8088/proxy/application_1720006717389_0001/
24/07/03 20:44:29 INFO mapreduce.Job: Running job: job_1720006717389_0001
24/07/03 20:44:45 INFO mapreduce.Job: Job job_1720006717389_0001 running in uber mode : false
24/07/03 20:44:45 INFO mapreduce.Job:  map 0% reduce 0%
24/07/03 20:44:57 INFO mapreduce.Job:  map 100% reduce 0%
24/07/03 20:45:13 INFO mapreduce.Job:  map 100% reduce 100%
24/07/03 20:45:14 INFO mapreduce.Job: Job job_1720006717389_0001 completed successfully
24/07/03 20:45:14 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=70
                FILE: Number of bytes written=396911
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=180
                HDFS: Number of bytes written=44
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=9440
                Total time spent by all reduces in occupied slots (ms)=11870
                Total time spent by all map tasks (ms)=9440
                Total time spent by all reduce tasks (ms)=11870
                Total vcore-milliseconds taken by all map tasks=9440
                Total vcore-milliseconds taken by all reduce tasks=11870
                Total megabyte-milliseconds taken by all map tasks=9666560
                Total megabyte-milliseconds taken by all reduce tasks=12154880
        Map-Reduce Framework
                Map input records=5
                Map output records=11
                Map output bytes=124
                Map output materialized bytes=70
                Input split bytes=100
                Combine input records=11
                Combine output records=5
                Reduce input groups=5
                Reduce shuffle bytes=70
                Reduce input records=5
                Reduce output records=5
                Spilled Records=10
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=498
                CPU time spent (ms)=3050
                Physical memory (bytes) snapshot=374968320
                Virtual memory (bytes) snapshot=4262629376
                Total committed heap usage (bytes)=219676672
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=80
        File Output Format Counters
                Bytes Written=44

查看结果

复制代码
[root@hadoop01 hadoop-2.9.2]# hdfs dfs -cat /wcoutput/part-r-00000
hadoop  2
hdfs    1
kmning  3
mapreduce       3
yarn    2

可见,程序将单词出现的次数通过MapReduce分布式计算统计了出来。

相关推荐
QYResearch1 小时前
导航浮标灯市场现状及前景分析
大数据
QYResearch1 小时前
2025年全球半导体用电子湿化学品行业总体规模、主要企业国内外市场占有率及排名
大数据
搞科研的小刘选手1 小时前
【通信&网络安全主题】第六届计算机通信与网络安全国际学术会议(CCNS 2025)
大数据·人工智能·网络安全·vr·通信工程·网络技术·计算机工程
阿里云大数据AI技术5 小时前
云栖实录 | 通义实验室基于MaxCompute进行大模型数据管理及处理
大数据·人工智能
左师佑图5 小时前
Apache POI SXSSFWorkbook 报错“没有那个文件或目录”问题排查与解决方案
java·apache·excel
yumgpkpm6 小时前
CMP (类ClouderaCDP7.3(404次编译) )华为鲲鹏Aarch64(ARM)信创环境多个mysql数据库汇聚的操作指南
大数据·hive·hadoop·zookeeper·big data·cloudera
CryptoPP7 小时前
获取越南股票市场列表(包含VN30成分股)实战指南
大数据·服务器·数据库·区块链
跨境小新7 小时前
TG弹出“只能给双向联系人发送消息”的飞机双向限制怎么办?
大数据
华阙之梦7 小时前
【在 Windows 上运行 Apache Hadoop 或 Spark/GeoTrellis 涉及 HDFS 】
hadoop·windows·apache
数智顾问8 小时前
破解 Shuffle 阻塞:Spark RDD 宽窄依赖在实时特征工程中的实战与未来
大数据·分布式·spark