概述:监督学习(分类,回归)与无监督学习(聚类)

目录:

一、监督学习:

1.什么是监督学习:

  • 当前创造市场价值的机器学习中99%都是监督学习。
  • 监督学习是指学习从input到output映射的算法 ,监督学习的关键是开发者提供供模型训练示例
  • 在训练阶段开发者需给定输入input和正确的输出output供模型训练,模型从输入、输出对中学习之后,在预测阶段模型只需接收输入未知input就会给出合理的预测值output。

2.监督学习类型:

  1. 分类 Classification 有限种预测结果
  2. 回归 Regression 无限种预测结果
  • 区别:分类问题预测输出的是有限集合(输入肿瘤数据预测A、B、C类[有限类型]肿瘤);回归问题预测输出的是无限集合(输入负荷数据预测用电量值[∈R])。

二、无监督学习

1.什么是无监督学习:

  • 无监督学习是指开发者仅提供input输入,而不给定output真实值标签,由模型自主学习input中的数据集,给出数据中可能存在的模式或结构。
  • 例如:监督学习给出input:肿瘤大小、患者年龄,output:肿瘤类型,模型学习Input和output后再对未知的input预测其output。而无监督学习给出input:肿瘤大小、患者年龄,不提供output,模型仅学习input来获取数据中的一些模式(模型学习后可能会将数据分为好几组)。
  • 再例如:在监督学习时候,我可能会对模型说:"我现在给你历史病人的肿瘤数据input和这些肿瘤分别是什么类型的真实output,你需要学习他们,以便于你能帮我预测今天刚来检查肿瘤的病人,即给你他们的肿瘤数据你能帮我预测今天的病人肿瘤的类型";在非监督学习的时候,我可能会说:"我现在给你历史病人的肿瘤数据input,这些数据太多太杂乱了,你能学习一下然后找到这些历史肿瘤数据中的相关性并将他们归类吗"。
  • 监督学习需提供input和output,非监督学习仅提供input。监督学习和无监督学习的区别就在于是否提供output真实值标签供模型学习,是否带有对未知数据的预测性质。

2.无监督学习类型:

  1. 聚类 Clustering:模型根据开发者提供的input(而不提供标签)根据数据的相似度将数据分成多个组,例如谷歌通过聚类算法可以将每天的上万条新闻按照词条和相关度归类显示。(这里注意区分与监督学习中的分类问题区别,即有无标签,是否带有对未知数据的预测性质)
  2. 异常检测 Anomaly detection
  3. 降维 Dimensionality reduction
  • 区别:聚类问题
相关推荐
执笔论英雄11 小时前
【大模型学习cuda】入们第一个例子-向量和
学习
wdfk_prog11 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
Liue6123123112 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
Gary Studio13 小时前
rk芯片驱动编写
linux·学习
mango_mangojuice13 小时前
Linux学习笔记(make/Makefile)1.23
java·linux·前端·笔记·学习
Lun3866buzha13 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
lingggggaaaa13 小时前
安全工具篇&动态绕过&DumpLsass凭据&Certutil下载&变异替换&打乱源头特征
学习·安全·web安全·免杀对抗
PP东14 小时前
Flowable学习(二)——Flowable概念学习
java·后端·学习·flowable
学电子她就能回来吗14 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
AI视觉网奇16 小时前
ue 角色驱动衣服 绑定衣服
笔记·学习·ue5