昇思MindSpore学习笔记2-01 LLM原理和实践 --基于 MindSpore 实现 BERT 对话情绪识别

摘要:

通过识别BERT对话情绪状态的实例,展现在昇思MindSpore AI框架中大语言模型的原理和实际使用方法、步骤。

一、环境配置

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp

输出:

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting mindnlp
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/72/37/ef313c23fd587c3d1f46b0741c98235aecdfd93b4d6d446376f3db6a552c/mindnlp-0.3.1-py3-none-any.whl (5.7 MB)
     ━━━━━━━━━━━━━━━━ 5.7/5.7 MB 14.2 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: mindspore in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.2.14)
Requirement already satisfied: tqdm in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (4.66.4)
Requirement already satisfied: requests in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.32.3)
Collecting datasets (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/60/2d/963b266bb8f88492d5ab4232d74292af8beb5b6fdae97902df9e284d4c32/datasets-2.20.0-py3-none-any.whl (547 kB)
     ━━━━━━━━━━━━━━━━ 547.8/547.8 kB 21.2 MB/s eta 0:00:00
Collecting evaluate (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c2/d6/ff9baefc8fc679dcd9eb21b29da3ef10c81aa36be630a7ae78e4611588e1/evaluate-0.4.2-py3-none-any.whl (84 kB)
     ━━━━━━━━━━━━━━━━ 84.1/84.1 kB 24.8 MB/s eta 0:00:00
Collecting tokenizers (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ba/26/139bd2371228a0e203da7b3e3eddcb02f45b2b7edd91df00e342e4b55e13/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB)
     ━━━━━━━━━━━━━━━━ 3.6/3.6 MB 14.7 MB/s eta 0:00:00a 0:00:01
Collecting safetensors (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/02/28e6280ed0f1bde89eed644b80f2ece4e5ae212dc9ee70d7f56fadc93602/safetensors-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB)
     ━━━━━━━━━━━━━━━━ 1.2/1.2 MB 17.8 MB/s eta 0:00:00a 0:00:01
Collecting sentencepiece (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a3/69/e96ef68261fa5b82379fdedb325ceaf1d353c6e839ec346d8244e0da5f2f/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB)
     ━━━━━━━━━━━━━━━━ 1.3/1.3 MB 14.4 MB/s eta 0:00:00a 0:00:01
Collecting regex (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/70/70/fea4865c89a841432497d1abbfd53878513b55c6543245fabe31cf8df0b8/regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (774 kB)
     ━━━━━━━━━━━━━━━━ 774.7/774.7 kB 15.3 MB/s eta 0:00:00a 0:00:01
Collecting addict (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6a/00/b08f23b7d7e1e14ce01419a467b583edbb93c6cdb8654e54a9cc579cd61f/addict-2.4.0-py3-none-any.whl (3.8 kB)
Collecting ml-dtypes (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/50/96/13d7c3cc82d5ef597279216cf56ff461f8b57e7096a3ef10246a83ca80c0/ml_dtypes-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB)
     ━━━━━━━━━━━━━━━━ 2.2/2.2 MB 11.9 MB/s eta 0:00:00a 0:00:01
Collecting pyctcdecode (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a5/8a/93e2118411ae5e861d4f4ce65578c62e85d0f1d9cb389bd63bd57130604e/pyctcdecode-0.5.0-py2.py3-none-any.whl (39 kB)
Collecting jieba (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)
     ━━━━━━━━━━━━━━━━ 19.2/19.2 MB 16.5 MB/s eta 0:00:0000:0100:01
  Preparing metadata (setup.py) ... done
Collecting pytest==7.2.0 (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/67/68/a5eb36c3a8540594b6035e6cdae40c1ef1b6a2bfacbecc3d1a544583c078/pytest-7.2.0-py3-none-any.whl (316 kB)
     ━━━━━━━━━━━━━━━━ 316.8/316.8 kB 16.7 MB/s eta 0:00:00
Requirement already satisfied: attrs>=19.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2.0)
Requirement already satisfied: iniconfig in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.0)
Requirement already satisfied: packaging in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2)
Requirement already satisfied: pluggy<2.0,>=0.12 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.5.0)
Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.2.0)
Requirement already satisfied: tomli>=1.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.1)
Requirement already satisfied: filelock in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (3.15.3)
Requirement already satisfied: numpy>=1.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (1.26.4)
Collecting pyarrow>=15.0.0 (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/87/60/cc0645eb4ef73f88847e40a7f9d238bae6b7409d6c1f6a5d200d8ade1f09/pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl (38.1 MB)
     ━━━━━━━━━━━━━━━━ 38.1/38.1 MB 14.2 MB/s eta 0:00:0000:0100:01
Collecting pyarrow-hotfix (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e4/f4/9ec2222f5f5f8ea04f66f184caafd991a39c8782e31f5b0266f101cb68ca/pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)
Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.3.8)
Requirement already satisfied: pandas in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (2.2.2)
Collecting xxhash (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7c/b9/93f860969093d5d1c4fa60c75ca351b212560de68f33dc0da04c89b7dc1b/xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (220 kB)
     ━━━━━━━━━━━━━━━━ 220.6/220.6 kB 15.6 MB/s eta 0:00:00
Collecting multiprocess (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl (133 kB)
     ━━━━━━━━━━━━━━━━ 133.4/133.4 kB 15.8 MB/s eta 0:00:00
Collecting fsspec<=2024.5.0,>=2023.1.0 (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ba/a3/16e9fe32187e9c8bc7f9b7bcd9728529faa725231a0c96f2f98714ff2fc5/fsspec-2024.5.0-py3-none-any.whl (316 kB)
     ━━━━━━━━━━━━━━━━ 316.1/316.1 kB 16.8 MB/s eta 0:00:00
Collecting aiohttp (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/eb/45/eebe8d2215328434f33ccb44a05d2741ff7ed4b96b56ca507e2ecf598b73/aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB)
     ━━━━━━━━━━━━━━━━ 1.2/1.2 MB 17.1 MB/s eta 0:00:0000:0100:01
Requirement already satisfied: huggingface-hub>=0.21.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.23.4)
Requirement already satisfied: pyyaml>=5.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (6.0.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2.2.2)
Requirement already satisfied: certifi>=2017.4.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2024.6.2)
Requirement already satisfied: protobuf>=3.13.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.27.1)
Requirement already satisfied: asttokens>=2.0.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (2.0.5)
Requirement already satisfied: pillow>=6.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (10.3.0)
Requirement already satisfied: scipy>=1.5.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.13.1)
Requirement already satisfied: psutil>=5.6.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.9.0)
Requirement already satisfied: astunparse>=1.6.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.6.3)
Collecting pygtrie<3.0,>=2.1 (from pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ec/cd/bd196b2cf014afb1009de8b0f05ecd54011d881944e62763f3c1b1e8ef37/pygtrie-2.5.0-py3-none-any.whl (25 kB)
Collecting hypothesis<7,>=6.14 (from pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ae/ea/526a7a629fcf6c78a1a6d37f988ca7e02e5b5785ec4de8a194deb40529f4/hypothesis-6.104.2-py3-none-any.whl (462 kB)
     ━━━━━━━━━━━━━━━━ 462.4/462.4 kB 14.4 MB/s eta 0:00:00
Requirement already satisfied: six in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore->mindnlp) (1.16.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore->mindnlp) (0.43.0)
Collecting aiosignal>=1.1.2 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl (7.6 kB)
Collecting frozenlist>=1.1.1 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/57/15/172af60c7e150a1d88ecc832f2590721166ae41eab582172fe1e9844eab4/frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (239 kB)
     ━━━━━━━━━━━━━━━━ 239.4/239.4 kB 17.1 MB/s eta 0:00:00
Collecting multidict<7.0,>=4.5 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d0/10/2ff646c471e84af25fe8111985ffb8ec85a3f6e1ade8643bfcfcc0f4d2b1/multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (125 kB)
     ━━━━━━━━━━━━━━━━ 125.9/125.9 kB 31.0 MB/s eta 0:00:00
Collecting yarl<2.0,>=1.0 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/d6/5b30ae1d8a13104ee2ceb649f28f2db5ad42afbd5697fd0fc61528bb112c/yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (300 kB)
     ━━━━━━━━━━━━━━━━ 300.9/300.9 kB 20.5 MB/s eta 0:00:00
Collecting async-timeout<5.0,>=4.0 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl (5.7 kB)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub>=0.21.2->datasets->mindnlp) (4.11.0)
Collecting sortedcontainers<3.0.0,>=2.1.0 (from hypothesis<7,>=6.14->pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)
Building wheels for collected packages: jieba
  Building wheel for jieba (setup.py) ... done
  Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314459 sha256=352f23b7dc8b4bade2f918165e055bc707601544400a4918136ba69f220ce9f6
  Stored in directory: /home/nginx/.cache/pip/wheels/1a/76/68/b6d79c4db704bb18d54f6a73ab551185f4711f9730c0c15d97
Successfully built jieba
Installing collected packages: sortedcontainers, sentencepiece, pygtrie, jieba, addict, xxhash, safetensors, regex, pytest, pyarrow-hotfix, pyarrow, multiprocess, multidict, ml-dtypes, hypothesis, fsspec, frozenlist, async-timeout, yarl, pyctcdecode, aiosignal, tokenizers, aiohttp, datasets, evaluate, mindnlp
  Attempting uninstall: pytest
    Found existing installation: pytest 8.0.0
    Uninstalling pytest-8.0.0:
      Successfully uninstalled pytest-8.0.0
  Attempting uninstall: fsspec
    Found existing installation: fsspec 2024.6.0
    Uninstalling fsspec-2024.6.0:
      Successfully uninstalled fsspec-2024.6.0
Successfully installed addict-2.4.0 aiohttp-3.9.5 aiosignal-1.3.1 async-timeout-4.0.3 datasets-2.20.0 evaluate-0.4.2 frozenlist-1.4.1 fsspec-2024.5.0 hypothesis-6.104.2 jieba-0.42.1 mindnlp-0.3.1 ml-dtypes-0.4.0 multidict-6.0.5 multiprocess-0.70.16 pyarrow-16.1.0 pyarrow-hotfix-0.6 pyctcdecode-0.5.0 pygtrie-2.5.0 pytest-7.2.0 regex-2024.5.15 safetensors-0.4.3 sentencepiece-0.2.0 sortedcontainers-2.4.0 tokenizers-0.19.1 xxhash-3.4.1 yarl-1.9.4

[notice] A new release of pip is available: 24.1 -> 24.1.1
[notice] To update, run: python -m pip install --upgrade pip

显示mindspore模块的基本信息

!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: mindnlp

二、模型简介

BERT是一种新型语言模型

全称:Bidirectional Encoder Representations from Transformers

中文:双向表达的编码变换

Google发布于2018年

用于自然语言处理场景类似的预训练语言模型有:

问答

命名实体识别

自然语言推理

文本分类等

BERT模型涉及

Transformer的Encoder

双向结构

BERT模型的主要创新点

pre-train方法

用Masked Language Model捕捉词语

用Next Sentence Prediction捕捉句子

用Masked Language Model方法训练BERT对话时

随机把语料库中15%的单词做Mask操作。

Mask操作的三种情况:

80%的单词直接用[Mask]替换

10%的单词直接替换成另一个新的单词

10%的单词保持不变。

问答Question Answering (QA)

自然语言推断Natural Language Inference (NLI)

Next Sentence Prediction预训练任务

目的:

让模型理解两个句子之间的联系。

训练内容:

输入是句子A和B

B有一半的几率是A的下一句

预测B是不是A的下一句

训练结果:

Embedding table

12层Transformer权重(BERT-BASE)

或24层Transformer权重(BERT-LARGE)。

微调Fine-tuning下游任务:

文本分类

相似度判断

阅读理解等。

对话情绪识别Emotion Detection(简称EmoTect)

对话文本

判断文本情绪类别

积极

消极

中性

计算置信度。

示例:

导入mindspore dataset nn context mindnlp等模块

import os
​
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, context
​
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy

输出:

Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.037 seconds.
Prefix dict has been built successfully.

三、准备数据集

  1. 数据集说明

实验数据集采用百度飞桨的机器人聊天数据

已标注

分词预处理

数据两列,制表符('\t')分隔:

情绪分类

0消极

1中性

2积极

中文文本

空格分词

utf8编码

数据示例:

label--text_a
0--谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1--我有事等会儿就回来和你聊
2--我见到你很高兴谢谢你帮我

2.下载数据集

# download dataset
!wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz
!tar xvf emotion_detection.tar.gz

输出:

--2024-07-01 13:38:50--  https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz
Resolving baidu-nlp.bj.bcebos.com (baidu-nlp.bj.bcebos.com)... 119.249.103.5, 113.200.2.111, 2409:8c04:1001:1203:0:ff:b0bb:4f27
Connecting to baidu-nlp.bj.bcebos.com (baidu-nlp.bj.bcebos.com)|119.249.103.5|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1710581 (1.6M) [application/x-gzip]
Saving to: 'emotion_detection.tar.gz'

emotion_detection.t 100%[===================>]   1.63M  8.04MB/s    in 0.2s    

2024-07-01 13:38:50 (8.04 MB/s) - 'emotion_detection.tar.gz' saved [1710581/1710581]

data/
data/test.tsv
data/infer.tsv
data/dev.tsv
data/train.tsv
data/vocab.txt

3.定义数据集类

# prepare dataset
class SentimentDataset:
    """Sentiment Dataset"""
​
    def __init__(self, path):
        self.path = path
        self._labels, self._text_a = [], []
        self._load()
​
    def _load(self):
        with open(self.path, "r", encoding="utf-8") as f:
            dataset = f.read()
        lines = dataset.split("\n")
        for line in lines[1:-1]:
            label, text_a = line.split("\t")
            self._labels.append(int(label))
            self._text_a.append(text_a)
​
    def __getitem__(self, index):
        return self._labels[index], self._text_a[index]
​
    def __len__(self):
        return len(self._labels)

四、 数据加载和数据预处理

数据加载和预处理函数

process_dataset()

import numpy as np
​
def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'
    column_names = ["label", "text_a"]
    dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
    # transforms
    type_cast_op = transforms.TypeCast(mindspore.int32)
    def tokenize_and_pad(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', 
truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text)
        return tokenized['input_ids'], tokenized['attention_mask']
    # map dataset
dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", 
output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=[type_cast_op], input_columns="label", 
output_columns='labels')
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, 
pad_info={'input_ids': (None, tokenizer.pad_token_id),
'attention_mask': (None, 0)})
    return dataset

数据预处理部分采用静态Shape处理:

昇腾NPU环境下暂不支持动态Shape

from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

输出:

100%━━━━━━━━━━━━━━━━━━━━━ 49.0/49.0 [00:00<00:00, 3.05kB/s]
 ━107k/0.00 [00:05<00:00, 36.3kB/s]
 ━263k/0.00 [00:15<00:00, 10.2kB/s]
 ━━━━━━━━━━━━━━━━━━━━━ 624/? [00:00<00:00, 56.0kB/s]

tokenizer.pad_token_id

输出:

0

取训练数据集的列名:

dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val   = process_dataset(SentimentDataset("data/dev.tsv"  ), tokenizer)
dataset_test  = process_dataset(SentimentDataset("data/test.tsv" ), tokenizer, shuffle=False)
dataset_train.get_col_names()

输出:

['input_ids', 'attention_mask', 'labels']

遍历显示训练数据集

print(next(dataset_train.create_tuple_iterator()))

输出:

[Tensor(shape=[32, 64], dtype=Int64, value=
[[ 101, 2769, 4638 ...    0,    0,    0],
 [ 101, 2769, 3221 ...    0,    0,    0],
 [ 101,  758, 1282 ...    0,    0,    0],
 ...
 [ 101, 1217,  678 ...    0,    0,    0],
 [ 101,  872,  679 ...    0,    0,    0],
 [ 101,  872, 3766 ...    0,    0,    0]]),
 Tensor(shape=[32, 64], dtype=Int64, value=
[[1, 1, 1 ... 0, 0, 0],
 [1, 1, 1 ... 0, 0, 0],
 [1, 1, 1 ... 0, 0, 0],
 ...
 [1, 1, 1 ... 0, 0, 0],
 [1, 1, 1 ... 0, 0, 0],
 [1, 1, 1 ... 0, 0, 0]]),
 Tensor(shape=[32], dtype=Int32, value=
 [1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,  1, 1, 1, 2, 2, 1, 1, 1])]

五、 模型构建

BERT 模型

BertForSequenceClassification模块构建

加载预训练权重

设置情感三分类

自动混合精度

实例化优化器

实例化评价指标

设置模型训练的权重保存策略

构建训练器

模型开始训练

from mindnlp.transformers import BertForSequenceClassification, BertModel
from mindnlp._legacy.amp import auto_mixed_precision
​
# set bert config and define parameters for training
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model = auto_mixed_precision(model, 'O1')
​
optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

(), learning_rate=2e-5)

输出:

100%━━━━━━━━━━━━━━━━━━ 392M/392M [00:53<00:00, 6.82MB/s]

The following parameters in checkpoint files are not loaded:

['cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight']

The following parameters in models are missing parameter:

['classifier.weight', 'classifier.bias']

metric = Accuracy()
# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)
# 构建训练器
trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_val, metrics=metric,
                  epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb])

%%time
# start training
trainer.run(tgt_columns="labels")

输出:

The train will start from the checkpoint saved in 'checkpoint'.
Epoch  0: 100%━━━━━━━━━━━━━━ 302/302 [04:07<00:00,  2.25s/it, loss=0.3460012]
Checkpoint: 'bert_emotect_epoch_0.ckpt' has been saved in epoch: 0.
Evaluate: 100%━━━━━━━━━━━━━━ 34/34 [00:07<00:00,  1.07it/s]
Evaluate Score: {'Accuracy': 0.9351851851851852}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 0.---------------
Epoch  1: 100%━━━━━━━━━━━━━━ 302/302 [02:38<00:00,  1.95it/s, loss=0.19017023]
Checkpoint: 'bert_emotect_epoch_1.ckpt' has been saved in epoch: 1.
Evaluate: 100%━━━━━━━━━━━━━━ 34/34 [00:05<00:00,  7.48it/s]
Evaluate Score: {'Accuracy': 0.9564814814814815}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 1.---------------
Epoch  2: 100%━━━━━━━━━━━━━━ 302/302 [02:40<00:00,  1.92it/s, loss=0.12662967]
The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_2.ckpt' has been saved in epoch: 2.
Evaluate: 100%━━━━━━━━━━━━━━ 34/34 [00:04<00:00,  7.59it/s]
Evaluate Score: {'Accuracy': 0.9740740740740741}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 2.---------------
Epoch  3: 100%━━━━━━━━━━━━━━ 302/302 [02:40<00:00,  1.92it/s, loss=0.08593981]
The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_3.ckpt' has been saved in epoch: 3.
Evaluate: 100%━━━━━━━━━━━━━━ 34/34 [00:04<00:00,  7.51it/s]
Evaluate Score: {'Accuracy': 0.9833333333333333}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 3.---------------
Epoch  4: 100%━━━━━━━━━━━━━━ 302/302 [02:41<00:00,  1.92it/s, loss=0.05900709]
The maximum number of stored checkpoints has been reached.
Checkpoint: 'bert_emotect_epoch_4.ckpt' has been saved in epoch: 4.
Evaluate: 100%━━━━━━━━━━━━━━ 34/34 [00:04<00:00,  7.39it/s]
Evaluate Score: {'Accuracy': 0.9879629629629629}
---------------Best Model: 'bert_emotect_best.ckpt' has been saved in epoch: 4.---------------
Loading best model from 'checkpoint' with '['Accuracy']': [0.9879629629629629]...
---------------The model is already load the best model from 'bert_emotect_best.ckpt'.---------------
CPU times: user 22min 58s, sys: 13min 25s, total: 36min 24s
Wall time: 15min 30s

六、 模型验证

验证评估

测试数据集

准确率

evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")

输出:

Evaluate: 100%━━━━━━━━━━━━━━ 33/33 [00:08<00:00,  1.20s/it]

Evaluate Score: {'Accuracy': 0.8822393822393823}

七、 模型推理

遍历推理数据集,展示结果与标签。

dataset_infer = SentimentDataset("data/infer.tsv")
def predict(text, label=None):
    label_map = {0: "消极", 1: "中性", 2: "积极"}
​
    text_tokenized = Tensor([tokenizer(text).input_ids])
    logits = model(text_tokenized)
    predict_label = logits[0].asnumpy().argmax()
    info = f"inputs: '{text}', predict: '{label_map[predict_label]}'"
    if label is not None:
        info += f" , label: '{label_map[label]}'"
    print(info)
from mindspore import Tensor
​
for label, text in dataset_infer:
    predict(text, label)

输出:

inputs: '我 要 客观', predict: '中性' , label: '中性'
inputs: '靠 你 真是 说 废话 吗', predict: '消极' , label: '消极'
inputs: '口嗅 会', predict: '中性' , label: '中性'
inputs: '每次 是 表妹 带 窝 飞 因为 窝路痴', predict: '中性' , label: '中性'
inputs: '别说 废话 我 问 你 个 问题', predict: '消极' , label: '消极'
inputs: '4967 是 新加坡 那 家 银行', predict: '中性' , label: '中性'
inputs: '是 我 喜欢 兔子', predict: '积极' , label: '积极'
inputs: '你 写 过 黄山 奇石 吗', predict: '中性' , label: '中性'
inputs: '一个一个 慢慢来', predict: '中性' , label: '中性'
inputs: '我 玩 过 这个 一点 都 不 好玩', predict: '消极' , label: '消极'
inputs: '网上 开发 女孩 的 QQ', predict: '中性' , label: '中性'
inputs: '背 你 猜 对 了', predict: '中性' , label: '中性'
inputs: '我 讨厌 你 , 哼哼 哼 。 。', predict: '消极' , label: '消极'

inputs: '我 讨厌 你 , 哼哼 哼 。 。', predict: '消极' , label: '消极'

八、 自定义推理数据集

predict("家人们咱就是说一整个无语住了 绝绝子叠buff")

输出:

inputs: '家人们咱就是说一整个无语住了 绝绝子叠buff', predict: '中性'
相关推荐
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室5 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
南宫生5 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__5 小时前
Web APIs学习 (操作DOM BOM)
学习
冷眼看人间恩怨5 小时前
【Qt笔记】QDockWidget控件详解
c++·笔记·qt·qdockwidget
苏言の狗7 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
数据的世界017 小时前
.NET开发人员学习书籍推荐
学习·.net
四口鲸鱼爱吃盐8 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习
paixiaoxin9 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_5152024910 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习