昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。

在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Representation),并在此基础上对IR图进行优化,最终在硬件设备上执行优化后的图。MindSpore使用基于图表示的函数式IR,称为MindIR,详情可参考中间表示MindIR。

MindSpore的静态图执行过程实际包含两步,对应静态图的Define和Run阶段,但在实际使用中,在实例化的Cell对象被调用时用户并不会分别感知到这两阶段,MindSpore将两阶段均封装在Cell的__call__方法中,因此实际调用过程为:

js 复制代码
model(inputs) = model.compile(inputs) + model.construct(inputs),其中model为实例化Cell对象。

使用Graph模式有两种方式:一是调用@jit装饰器修饰函数或者类的成员方法,所修饰的函数或方法将会被编译成静态计算图。jit使用规则详见jit API文档。二是设置ms.set_context(mode=ms.GRAPH_MODE),使用Cell类并且在construct函数中编写执行代码,此时construct函数的代码将会被编译成静态计算图。Cell定义详见Cell API文档。

由于语法解析的限制,当前在编译构图时,支持的数据类型、语法以及相关操作并没有完全与Python语法保持一致,部分使用受限。借鉴传统JIT编译的思路,从图模式的角度考虑动静图的统一,扩展图模式的语法能力,使得静态图提供接近动态图的语法使用体验,从而实现动静统一。为了便于用户选择是否扩展静态图语法,提供了JIT语法支持级别选项jit_syntax_level,其值必须在[STRICT,LAX]范围内,选择STRICT则认为使用基础语法,不扩展静态图语法。默认值为LAX,更多请参考本文的扩展语法(LAX级别)章节。全部级别都支持所有后端。

  • STRICT: 仅支持基础语法,且执行性能最佳。可用于MindIR导入导出。

  • LAX: 支持更多复杂语法,最大程度地兼容Python所有语法。由于存在可能无法导出的语法,不能用于MindIR导入导出。

本文主要介绍,在编译静态图时,支持的数据类型、语法以及相关操作,这些规则仅适用于Graph模式。


使用静态图加速

背景介绍

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。 如需要手动控制框架采用PyNative模式,可以通过以下代码进行网络构建:

js 复制代码
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

...

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]

[-0.00134926 -0.13563682 -0.02863023 -0.05452826 0.03290743 -0.12423715

-0.0582641 -0.10854103 -0.08558805 0.06099342]]

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。有关静态图模式的运行原理,可以参考静态图语法支持。

在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。

如需要手动控制框架采用静态图模式,可以通过以下代码进行网络构建:

js 复制代码
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

...

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]

[ 0.05363735 0.05117104 -0.03343301 0.06347139 0.07546629 0.03263091

0.02790363 0.06269836 0.01838502 0.04387159]]

静态图模式的使用场景

MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

有关使用静态图来进行网络编译的示例,请参考网络构建。

静态图模式开启方式

通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:

js 复制代码
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
​
@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)
​
output = run(input)
print(output)

[[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

...

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]

[-0.12126954 0.06986676 -0.2230821 -0.07087803 -0.01003947 0.01063392

0.10143848 -0.0200909 -0.09724037 0.0114444 ]]

除使用修饰器外,也可使用函数变换方式调用jit方法,示例如下:

js 复制代码
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
​
def run(x):
    model = Network()
    return model(x)
​
run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行
output = run(input)
print(output)

[[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

...

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]

[ 0.11027216 -0.09628229 0.0457969 0.05396656 -0.06958974 0.0428197

-0.1572069 -0.14151613 -0.04531277 0.07521383]]

当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:

js 复制代码
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    @ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
model = Network()
output = model(input)
print(output)

[[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

...

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]

[ 0.10522258 0.06597593 -0.09440921 -0.04883489 0.07194916 0.1343117

-0.06813788 0.01986085 0.0216996 -0.05345828]]

基于context的开启方式

context模式是一种全局的设置模式。代码示例如下:

js 复制代码
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置
​
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
​
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
​
model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

[[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

...

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]

[ 0.08501796 -0.04404321 -0.05165704 0.00357929 0.00051521 0.00946456

0.02748473 -0.19415936 -0.00278988 0.04024826]]

静态图的语法约束

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。因此,编译器无法支持全量的Python语法。MindSpore的静态图编译器维护了Python常用语法子集,以支持神经网络的构建及训练。详情可参考静态图语法支持。

JitConfig配置选项

在图模式下,可以通过使用JitConfig配置选项来一定程度的自定义编译流程,目前JitConfig支持的配置参数如下:

  • jit_level: 用于控制优化等级。
  • exec_mode: 用于控制模型执行方式。
  • jit_syntax_level: 设置静态图语法支持级别,详细介绍请见静态图语法支持。

静态图高级编程技巧

使用静态图高级编程技巧可以有效地提高编译效率以及执行效率,并可以使程序运行的更加稳定。

相关推荐
珊瑚里的鱼4 分钟前
【单链表算法实战】解锁数据结构核心谜题——环形链表
数据结构·学习·程序人生·算法·leetcode·链表·visual studio
林涧泣5 分钟前
图的矩阵表示
学习·线性代数·矩阵
chimchim6612 分钟前
【starrocks学习】之catalog
学习
刀客12321 分钟前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing27 分钟前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码1 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_1 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI1 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶1 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉