逻辑回归模型(非回归问题,而是分类问题)

目录:

一、Sigmoid函数:

Sigmoid函数是构建逻辑回归模型的重要函数,如下图所示。

  • 分类问题目标是将模型的输出结果控制在[0,1]的范围内,当模型输出结果<0.5,默认预测结果为0;当模型输出结果>0.5,默认预测结果为1。
  • 二分类问题的解决思路是:通过构建逻辑回归模型f将二分类问题的输入x映射到Sigmoid函数的输入z上计算输出g,再根据g的范围(是否大于0.5)获得逻辑回归模型的结果(即二分类问题的结果)。
  • 函数的定义域∈R,值域∈[0,1],当输入z<0 时,Sogmoid函数输出结果g<0.5 ,默认为结果是0 ,构成二分类问题的第一个类别 。当输入z>0 时,Sogmoid函数输出结果g>0.5 ,默认为结果是1 ,构成二分类问题的第二个类别

二、逻辑回归介绍:

逻辑回归用来解决二分类问题 。分类问题即模型的输出结果只有有限个(回归问题则是无限个),二分类问题即模型的输出结果只有两个。

在回归问题的经典案例"肿瘤预测案例"中,使用肿瘤尺寸size特征预测该肿瘤是否是恶性肿瘤,输出结果只有两种:是(1)或否(0)。

这时使用线性回归模型就很难拟合训练集 (线性回归解决的是回归问题,而肿瘤预测案例是一个分类问题,准确说是二分类问题) ,因此提出了逻辑回归思想。

逻辑回归模型(解决分类问题):输入特征或特征集X并输出0~1之间的数字 ,其中拟合曲线通过Sogmoid函数来构造。具体构造流程如下图:

  • 第一行解释:逻辑回归模型f 的构造同线性回归,通过输入特征集X输出预测结果f ,不同点在于f取值范围∈[0,1]
  • 第二三四行解释:之前我们介绍了Sigmoid函数的输出g可以很好的解决二分类问题,因此我们巧妙地使用了Sigmoid函数来构建逻辑回归模型f解决二分类问题,通过将输入特征集X使用线性回归或多项式回归映射到Sigmoid函数的输入z实现Sigmoid函数的输出然后根据Sigmoid函数输出结果是否大于0.5来计算逻辑回归模型的输出f(0或1),得到二分类问题的结果。
  • 第五行解释:上述思想整合一下即可得出逻辑回归模型f,其中模型的输入是特征集X,输出是分类的预测结果0或1。
  • 第六行解释:当逻辑回归模型的输出结果大于等于0.5时,预测值y^为1,用上文的例子来讲就是该肿瘤是恶性肿瘤;当逻辑回归模型的输出结果小于等于0.5时,预测值为0,用上文的例子来讲就是该肿瘤不是恶性肿瘤。

三、决策边界

从上文不难得到,当Sigmoid函数的输入z大于等于0时,即特征集X到z的映射z=wx+b大于等于0时,模型的输出结果是1;当Sigmoid函数的输入z小于0时,即特征集X到z的映射z=wx+b小于0时,模型的输出结果是0。

这是我们可以提出决策边界的概念:使得模型输入X到Sigmoid函数输入z的映射等于0的方程叫做决策边界。

以上述肿瘤预测模型为例,模型输入X到Sigmoid函数输入z的映射为z=wx+b,那么决策边界就是wx+b=0。

下面让我们用图像来展示决策边界的意义:

  • 例1:映射为线性函数

    上图展示了训练集中特征x1、x2不同取值时标签的真实值,其中圈代表该样本分类结果为0,叉代表该样本分类结果为1。

    逻辑回归模型如上图,其中模型输入X到Sigmoid函数输入z的映射为z=w1x1+w2x2+b,则决策边界为w1x1+w2x2+b=0。若模型训练结果为w1=1,w2=1,b=-3时,决策边界为x1+x2-3=0,决策边界的函数图像如上图所示,可以看到,如果样本的特征位于决策边界左侧,逻辑回归预测时0,反之为1,这就是决策边界的图像意义。

  • 例2:映射为多项式函数

    模型输入X到Sigmoid函数输入z的映射为多项式函数,决策边界如图,可以看到,模型训练完成后,参数值确定了,决策边界也立即就确定了,这时样本的特征相对决策边界的位置决定了该样本的预测结果。

四、逻辑回归模型训练过程:

其实和线性回归训练过程一样,只不过是待训练模型(函数)不同而已。

1.训练目标:

2.梯度下降调整参数:

相关推荐
zhengyawen66613 小时前
深度学习之图像回归(二)
人工智能·数据挖掘·回归
ww1800014 小时前
多目标粒子群优化算法-MOPSO-(机器人路径规划/多目标信号处理(图像/音频))
人工智能·算法·分类·信号处理
liruiqiang0514 小时前
线性模型 - Logistic 回归
人工智能·机器学习·数据挖掘·回归
zhengyawen66614 小时前
深度学习之图像回归(一)
人工智能·数据挖掘·回归
拓端研究室TRL19 小时前
R语言Stan贝叶斯空间条件自回归CAR模型分析死亡率多维度数据可视化
开发语言·信息可视化·数据挖掘·回归·r语言
xiao5kou4chang6kai41 天前
基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
python·深度学习·分类
zhengyawen6661 天前
深度学习之图像分类(一)
人工智能·深度学习·分类
无极工作室(网络安全)1 天前
机器学习小项目之鸢尾花分类
人工智能·机器学习·分类
pianmian11 天前
python绘图之回归拟合图
开发语言·python·回归
程序员JerrySUN1 天前
树莓派 4B:AI 物联网完整部署方案
linux·人工智能·嵌入式硬件·物联网·分类·数据挖掘