非参数检测6——优缺点

优点:

  1. 参量检测的特点在于以似然比处理器为基础,并建立在假定干扰或噪声的统计特性已知的基础上。但实际上,干扰环境往往十分复杂,包括自然和人为因素,且常常随时改变。这使我们很难确定噪声的统计特性。因此人们提出了非参量检测。
  2. 非参量检测不需要考虑噪声的模型,它的适应性比较强,对各类噪声都表现出比较好的性能,尤其是虚警性能,而且非参量检测的实现也比较简单。

缺点:

  1. 然而,与参量检测相比,由于非参量检测没有利用干扰的先验统计知识,虽然适应性强,但针对性差。因此对于某些已知统计特性的干扰来说,非参量检测器的性能一般低于参量检测器的性能。
  2. 如果不知道输入数据的精确分布但能获得其近似分布,(比如是接近高斯的),这时若用非参量检测器,会显得过于保守,将造成输入数据统计信息的损失。若采用参量检测器也不恰当,因为所掌握的输入数据的统计知识不完全。
相关推荐
知来者逆8 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤11 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
阿让啊12 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
武汉唯众智创13 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
এ᭄画画的北北13 分钟前
力扣-160.相交链表
算法·leetcode·链表
Johny_Zhao24 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子33 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人39 分钟前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者42 分钟前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos