非参数检测6——优缺点

优点:

  1. 参量检测的特点在于以似然比处理器为基础,并建立在假定干扰或噪声的统计特性已知的基础上。但实际上,干扰环境往往十分复杂,包括自然和人为因素,且常常随时改变。这使我们很难确定噪声的统计特性。因此人们提出了非参量检测。
  2. 非参量检测不需要考虑噪声的模型,它的适应性比较强,对各类噪声都表现出比较好的性能,尤其是虚警性能,而且非参量检测的实现也比较简单。

缺点:

  1. 然而,与参量检测相比,由于非参量检测没有利用干扰的先验统计知识,虽然适应性强,但针对性差。因此对于某些已知统计特性的干扰来说,非参量检测器的性能一般低于参量检测器的性能。
  2. 如果不知道输入数据的精确分布但能获得其近似分布,(比如是接近高斯的),这时若用非参量检测器,会显得过于保守,将造成输入数据统计信息的损失。若采用参量检测器也不恰当,因为所掌握的输入数据的统计知识不完全。
相关推荐
NAGNIP2 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP2 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴3 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
元亓亓亓3 小时前
LeetCode热题100--416. 分割等和子集--中等
算法·leetcode·职场和发展
BanyeBirth3 小时前
C++差分数组(二维)
开发语言·c++·算法
Cherry的跨界思维3 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者3 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai3 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃4 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb4 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能