非参数检测6——优缺点

优点:

  1. 参量检测的特点在于以似然比处理器为基础,并建立在假定干扰或噪声的统计特性已知的基础上。但实际上,干扰环境往往十分复杂,包括自然和人为因素,且常常随时改变。这使我们很难确定噪声的统计特性。因此人们提出了非参量检测。
  2. 非参量检测不需要考虑噪声的模型,它的适应性比较强,对各类噪声都表现出比较好的性能,尤其是虚警性能,而且非参量检测的实现也比较简单。

缺点:

  1. 然而,与参量检测相比,由于非参量检测没有利用干扰的先验统计知识,虽然适应性强,但针对性差。因此对于某些已知统计特性的干扰来说,非参量检测器的性能一般低于参量检测器的性能。
  2. 如果不知道输入数据的精确分布但能获得其近似分布,(比如是接近高斯的),这时若用非参量检测器,会显得过于保守,将造成输入数据统计信息的损失。若采用参量检测器也不恰当,因为所掌握的输入数据的统计知识不完全。
相关推荐
丝斯201120 小时前
AI学习笔记整理(26)—— 计算机视觉之目标追踪‌
人工智能·笔记·学习
gallonyin20 小时前
【AI智能体】打造高内聚的 MCP-Filesystem Server
人工智能·架构·智能体
Deepoch20 小时前
Deepoc-M 破局:半导体研发告别试错内耗
大数据·人工智能·数学建模·半导体·具身模型·deepoc
xinyu_Jina20 小时前
Info Flow:去中心化数据流、跨协议标准化与信息源权重算法
算法·去中心化·区块链
Jac_kie_層樓20 小时前
力扣hot100刷题记录(12.2)
算法·leetcode·职场和发展
Debroon20 小时前
Function Call 函数调用高阶方法:从零开始,深入理解 AI 函数调用的核心原理与实战技巧
人工智能
超龄超能程序猿21 小时前
提升文本转SQL(Text-to-SQL)精准度的实践指南
数据库·人工智能·sql
柒柒钏21 小时前
PyTorch学习总结(一)
人工智能·pytorch·学习
稚辉君.MCA_P8_Java21 小时前
Gemini永久会员 C++返回最长有效子串长度
开发语言·数据结构·c++·后端·算法
金融小师妹21 小时前
基于NLP政策信号解析的联邦基金利率预测:美银动态调整12月降息概率至88%,2026年双降路径的强化学习模拟
大数据·人工智能·深度学习·1024程序员节