非参数检测6——优缺点

优点:

  1. 参量检测的特点在于以似然比处理器为基础,并建立在假定干扰或噪声的统计特性已知的基础上。但实际上,干扰环境往往十分复杂,包括自然和人为因素,且常常随时改变。这使我们很难确定噪声的统计特性。因此人们提出了非参量检测。
  2. 非参量检测不需要考虑噪声的模型,它的适应性比较强,对各类噪声都表现出比较好的性能,尤其是虚警性能,而且非参量检测的实现也比较简单。

缺点:

  1. 然而,与参量检测相比,由于非参量检测没有利用干扰的先验统计知识,虽然适应性强,但针对性差。因此对于某些已知统计特性的干扰来说,非参量检测器的性能一般低于参量检测器的性能。
  2. 如果不知道输入数据的精确分布但能获得其近似分布,(比如是接近高斯的),这时若用非参量检测器,会显得过于保守,将造成输入数据统计信息的损失。若采用参量检测器也不恰当,因为所掌握的输入数据的统计知识不完全。
相关推荐
好奇龙猫13 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)20 分钟前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan22 分钟前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维28 分钟前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS31 分钟前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd43 分钟前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
独自破碎E1 小时前
【二分法】寻找峰值
算法
mit6.8241 小时前
位运算|拆分贪心
算法
水如烟1 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析