深度学习之正则化

目标

我们学习正则化之前应该先了解我们为什么要用正则化 。正则化解决了什么问题 。我们讲正则化之前 ,先了解一个概念--》过拟合

过拟合





数据增强


L1和L2正则化




Dropout



注意:Dropout是不适合用在卷积神经网络的

提前终止

一般的做法是:记录最好的准确率,如果连续训练十次还是没有提升准确率,那么就停止训练。

随机池化



随机池化可以用在卷积神经网络

相关推荐
飞睿科技23 分钟前
乐鑫代理商飞睿科技,2025年AI智能语音助手市场发展趋势与乐鑫芯片解决方案分析
人工智能
许泽宇的技术分享25 分钟前
从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
人工智能·科技·知识图谱
坤坤爱学习2.039 分钟前
求医十年,病因不明,ChatGPT:你看起来有基因突变
人工智能·ai·chatgpt·程序员·大模型·ai编程·大模型学
蹦蹦跳跳真可爱5891 小时前
Python----循环神经网络(Transformer ----注意力机制)
人工智能·深度学习·nlp·transformer·循环神经网络
空中湖3 小时前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
lishaoan773 小时前
使用tensorflow的线性回归的例子(七)
人工智能·tensorflow·线性回归
千宇宙航6 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco7 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟7 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
jndingxin10 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉