深度学习之正则化

目标

我们学习正则化之前应该先了解我们为什么要用正则化 。正则化解决了什么问题 。我们讲正则化之前 ,先了解一个概念--》过拟合

过拟合





数据增强


L1和L2正则化




Dropout



注意:Dropout是不适合用在卷积神经网络的

提前终止

一般的做法是:记录最好的准确率,如果连续训练十次还是没有提升准确率,那么就停止训练。

随机池化



随机池化可以用在卷积神经网络

相关推荐
七元权几秒前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
Fuly10242 分钟前
prompt构建技巧
人工智能·prompt
智驱力人工智能4 分钟前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
XXX-X-XXJ7 分钟前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus
艾醒(AiXing-w)14 分钟前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
科兴第一吴彦祖17 分钟前
基于Spring Boot + Vue 3的乡村振兴综合服务平台
java·vue.js·人工智能·spring boot·推荐算法
姚瑞南24 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣1 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
补三补四1 小时前
SMOTE 算法详解:解决不平衡数据问题的有效工具
人工智能·算法
为java加瓦1 小时前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt