一:棋盘校准参数说明(内参)
棋盘校准的方法及代码很多,参见其他连接
1:内参矩阵
2:畸变系数
针对鱼眼相机此处是4个参数,在其校准代码中也可以知道,其通常的定义如下:
data.camera_mat = np.eye(3, 3)
data.dist_coeff = np.zeros((4, 1))
二:基于生成的参数D和K进行调整
直接上代码,
import os
import numpy as np
import cv2
#下面的值是来自棋盘格校准后的内参矩阵K
initial_camera_matrix = np.array([[389.3455401867884, 0.0, 630.3678577531273],
[0.0, 388.5686773894828, 361.167452606629],
[0.0, 0.0, 1.0]])
camera_mat = np.array([[302.116935,0.0,521.926531],
[ 0.0, 358.512097, 363.652721],
[ 0.0, 0.0, 1.0 ]])
#下面的值是来自棋盘格校准后的D
dist_coeff = np.array([[0.05648235312901486],[-0.024826520405491565],[-0.002416551582982325],[0.0010672440368159684]])
def adjust_parameters(x):
# 获取当前滑动条的值
fx = cv2.getTrackbarPos('fx', 'Parameters')/ 100.0
fy = cv2.getTrackbarPos('fy', 'Parameters')/ 100.0
cx = cv2.getTrackbarPos('cx', 'Parameters')/ 100.0
cy = cv2.getTrackbarPos('cy', 'Parameters')/ 100.0
k1 = cv2.getTrackbarPos('k1', 'Parameters') / 2000000 # 调整范围以便于滑动条控制
k2 = cv2.getTrackbarPos('k2', 'Parameters') / 2000000
p1 = cv2.getTrackbarPos('p1', 'Parameters') / 2000000
p2 = cv2.getTrackbarPos('p2', 'Parameters') / 2000000
# 更新相机矩阵和畸变系数
new_camera_matrix = np.array([[fx, 0.0, cx],
[0.0, fy, cy],
[0.0, 0.0, 1.0]])
new_distortion_coeff = np.array([[k1], [-k2], [-p1], [p2]])
map1, map2 = cv2.fisheye.initUndistortRectifyMap(
initial_camera_matrix, new_distortion_coeff, np.eye(3, 3), new_camera_matrix,
(args.width * args.sizescale, args.height * args.sizescale), cv2.CV_16SC2)
img = np.load("./calibrate_img/img_cam5.npy")
print(new_camera_matrix)
print(new_distortion_coeff)
undistort_img = cv2.remap(img, map1, map2, cv2.INTER_LINEAR)
undistort_img=cv2.resize(undistort_img,(img.shape[1],img.shape[0]))
cv2.imshow("undistort_img",undistort_img)
cv2.imshow("src_img",img)
def main():
cv2.namedWindow('Parameters')
# 添加相机矩阵的滑动条
cv2.createTrackbar('fx', 'Parameters', int(camera_mat[0, 0]* 10000), 90*100000, adjust_parameters)
cv2.createTrackbar('fy', 'Parameters', int(camera_mat[1, 1]* 10000), 90*100000, adjust_parameters)
cv2.createTrackbar('cx', 'Parameters', int(camera_mat[0, 2]* 10000), 90*1000000, adjust_parameters)
cv2.createTrackbar('cy', 'Parameters', int(camera_mat[1, 2]* 10000), 90*100000, adjust_parameters)
# 添加畸变系数的滑动条
cv2.createTrackbar('k1', 'Parameters', int(dist_coeff[0, 0] * 100000), 4000000, adjust_parameters)
cv2.createTrackbar('k2', 'Parameters', int(dist_coeff[1, 0] * 100000), 4000000, adjust_parameters)
cv2.createTrackbar('p1', 'Parameters', int(dist_coeff[2, 0] * 100000), 4000000, adjust_parameters)
cv2.createTrackbar('p2', 'Parameters', int(dist_coeff[3, 0] * 100000), 4000000, adjust_parameters)
while True:
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cv2.destroyAllWindows()
if __name__ == '__main__':
main()