opencv 鱼眼图像的矫正(动态参数调整)

一:棋盘校准参数说明(内参)

棋盘校准的方法及代码很多,参见其他连接

1:内参矩阵

2:畸变系数

针对鱼眼相机此处是4个参数,在其校准代码中也可以知道,其通常的定义如下:

       data.camera_mat = np.eye(3, 3)
       data.dist_coeff = np.zeros((4, 1))

二:基于生成的参数D和K进行调整

直接上代码,

import os
import numpy as np
import cv2
#下面的值是来自棋盘格校准后的内参矩阵K
initial_camera_matrix = np.array([[389.3455401867884, 0.0, 630.3678577531273],
                                  [0.0, 388.5686773894828, 361.167452606629],
                                  [0.0, 0.0, 1.0]])
                     
camera_mat = np.array([[302.116935,0.0,521.926531],
                       [  0.0, 358.512097, 363.652721],
                       [  0.0, 0.0,     1.0      ]])

#下面的值是来自棋盘格校准后的D
dist_coeff = np.array([[0.05648235312901486],[-0.024826520405491565],[-0.002416551582982325],[0.0010672440368159684]])

def adjust_parameters(x):
# 获取当前滑动条的值
    fx = cv2.getTrackbarPos('fx', 'Parameters')/ 100.0 
    fy = cv2.getTrackbarPos('fy', 'Parameters')/ 100.0 
    cx = cv2.getTrackbarPos('cx', 'Parameters')/ 100.0 
    cy = cv2.getTrackbarPos('cy', 'Parameters')/ 100.0 
    k1 = cv2.getTrackbarPos('k1', 'Parameters') / 2000000  # 调整范围以便于滑动条控制
    k2 = cv2.getTrackbarPos('k2', 'Parameters') / 2000000
    p1 = cv2.getTrackbarPos('p1', 'Parameters') / 2000000
    p2 = cv2.getTrackbarPos('p2', 'Parameters') / 2000000

# 更新相机矩阵和畸变系数
    new_camera_matrix = np.array([[fx, 0.0, cx],
                                  [0.0, fy, cy],
                                  [0.0, 0.0, 1.0]])
    new_distortion_coeff = np.array([[k1], [-k2], [-p1], [p2]])

    map1, map2 = cv2.fisheye.initUndistortRectifyMap(
                initial_camera_matrix, new_distortion_coeff, np.eye(3, 3), new_camera_matrix, 
                (args.width * args.sizescale, args.height * args.sizescale), cv2.CV_16SC2) 

  
    img = np.load("./calibrate_img/img_cam5.npy")
    print(new_camera_matrix)
    print(new_distortion_coeff)
    undistort_img = cv2.remap(img, map1, map2, cv2.INTER_LINEAR)
    undistort_img=cv2.resize(undistort_img,(img.shape[1],img.shape[0]))

    cv2.imshow("undistort_img",undistort_img)

    
    cv2.imshow("src_img",img)




def main():

    cv2.namedWindow('Parameters')
    
# 添加相机矩阵的滑动条
    cv2.createTrackbar('fx', 'Parameters', int(camera_mat[0, 0]* 10000), 90*100000, adjust_parameters)
    cv2.createTrackbar('fy', 'Parameters', int(camera_mat[1, 1]* 10000), 90*100000, adjust_parameters)
    cv2.createTrackbar('cx', 'Parameters', int(camera_mat[0, 2]* 10000), 90*1000000, adjust_parameters)
    cv2.createTrackbar('cy', 'Parameters', int(camera_mat[1, 2]* 10000), 90*100000, adjust_parameters)
    
# 添加畸变系数的滑动条
    cv2.createTrackbar('k1', 'Parameters', int(dist_coeff[0, 0] * 100000), 4000000, adjust_parameters)
    cv2.createTrackbar('k2', 'Parameters', int(dist_coeff[1, 0] * 100000), 4000000, adjust_parameters)
    cv2.createTrackbar('p1', 'Parameters', int(dist_coeff[2, 0] * 100000), 4000000, adjust_parameters)
    cv2.createTrackbar('p2', 'Parameters', int(dist_coeff[3, 0] * 100000), 4000000, adjust_parameters)
    while True:
        key = cv2.waitKey(1) & 0xFF
        if key == ord('q'):
            break

    cv2.destroyAllWindows()  
    
if __name__ == '__main__':
    main()    
相关推荐
深圳南柯电子5 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ6 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008811 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖17 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室2 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习2 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测