昇思MindSpore学习笔记6-03计算机视觉--ResNet50图像分类

摘要:

记录MindSpore AI框架使用ResNet50神经网络模型,选择Bottleneck残差网络结构对CIFAR-10数据集进行分类的过程、步骤和方法。包括环境准备、下载数据集、数据集加载和预处理、构建模型、模型训练、模型测试等。

一、

1. 图像分类

最基础的计算机视觉应用

有监督学习类别

给定一张图像(猫、狗、飞机、汽车等等)

判断图像所属的类别

使用ResNet50网络

对CIFAR-10数据集进行分类

2.ResNet网络

ResNet50网络

2015年微软实验室提出

ILSVRC2015图像分类竞赛第一名

传统卷积神经网络

一系列卷积层和池化层堆叠

堆叠到一定深度时会出现退化问题

56层网络与20层网络训练误差和测试误差图

CIFAR-10数据集

56层网络比20层网络训练误差和测试误差更大

随着网络加深,误差并没有减小

3. 残差网络结构

Residual Network

减轻退化问题

实现搭建较深的网络结构(突破1000层)

ResNet网络在CIFAR-10数据集上的训练误差与测试误差图

虚线 训练误差

实线 测试误差

网络层数越深,训练误差和测试误差越小

二、环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 

三、 数据集准备与加载

1.数据集

CIFAR-10数据集

60000张32*32的彩色图像

50000张训练图片

10000张评估图片

10个类别

每类有6000张图

2.下载数据集

download接口

下载

解压

仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)

from download import download
​
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"
​
download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz (162.2 MB)

file_sizes: 100%|█████████████████████████████| 170M/170M [00:01<00:00, 113MB/s]
Extracting tar.gz file...
Successfully downloaded / unzipped to ./datasets-cifar10-bin
'./datasets-cifar10-bin'

数据集目录结构:

datasets-cifar10-bin/cifar-10-batches-bin
├── batches.meta.text
├── data_batch_1.bin
├── data_batch_2.bin
├── data_batch_3.bin
├── data_batch_4.bin
├── data_batch_5.bin
├── readme.html
└── test_batch.bin

3.加载 数据

mindspore.dataset.Cifar10Dataset接口

加载数据集

图像增强操作

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstype
​
data_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 256  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 4  # 并行线程个数
num_classes = 10  # 分类数量
​
def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):
​
    data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,
                                 usage=usage,
                                 num_parallel_workers=workers,
                                 shuffle=True)
​
    trans = []
    if usage == "train":
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]
​
    trans += [
        vision.Resize(resize),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]
​
    target_trans = transforms.TypeCast(mstype.int32)
​
    # 数据映射操作
    data_set = data_set.map(operations=trans,
                            input_columns='image',
                            num_parallel_workers=workers)
​
    data_set = data_set.map(operations=target_trans,
                            input_columns='label',
                            num_parallel_workers=workers)
​
    # 批量操作
    data_set = data_set.batch(batch_size)
​
    return data_set
​
​
# 获取处理后的训练与测试数据集
​
dataset_train = create_dataset_cifar10(dataset_dir=data_dir,
                                       usage="train",
                                       resize=image_size,
                                       batch_size=batch_size,
                                       workers=workers)
step_size_train = dataset_train.get_dataset_size()
​
dataset_val = create_dataset_cifar10(dataset_dir=data_dir,
                                     usage="test",
                                     resize=image_size,
                                     batch_size=batch_size,
                                     workers=workers)
step_size_val = dataset_val.get_dataset_size()

4.显示 CIFAR-10训练数据集

import matplotlib.pyplot as plt
import numpy as np
​
data_iter = next(dataset_train.create_dict_iterator())
​
images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")
​
# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")
​
classes = []
​
with open(data_dir + "/batches.meta.txt", "r") as f:
    for line in f:
        line = line.rstrip()
        if line:
            classes.append(line)
​
# 训练数据集的前六张图片
plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    image_trans = np.transpose(images[i], (1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    image_trans = std * image_trans + mean
    image_trans = np.clip(image_trans, 0, 1)
    plt.title(f"{classes[labels[i]]}")
    plt.imshow(image_trans)
    plt.axis("off")
plt.show()

输出:

Image shape: (256, 3, 32, 32), Label shape: (256,)
Labels: [3 3 6 4 7 4]

四、 构建网络

残差网络结构(Residual Network)

有效减轻ResNet退化问题

实现更深的网络结构设计

提高网络的训练精度

堆叠残差网络构建ResNet50网络

1. 构建残差网络结构

残差网络结构图

残差网络由两个分支构成

主分支

堆叠系列卷积操作得到

输出的特征矩阵()

shortcuts(图中弧线表示)

从输入直接到输出

主分支F(x)加上shortcuts输出的特征矩阵x得到F(x)+x

Relu激活函数

输出

残差网络结构主要由两种

Building Block

用于较浅的ResNet网络,如ResNet18和ResNet34

Bottleneck

用于层数较深的ResNet网络,如ResNet50、ResNet101和ResNet152

Building Block

Building Block结构图

主分支有两层卷积网络结构:

第一层网络

输入channel为64

3×33×3卷积层

Batch Normalization层

Relu激活函数层

输出channel为64

第二层网络

输入channel为64

3×33×3的卷积层

Batch Normalization层

输出channel为64

融合

主分支输出的特征矩阵

shortcuts输出的特征矩阵

保证shape相同

输出Relu激活函数

主分支与shortcuts输出的特征矩阵相加

如果shape不相同

如输出channel是输入channel的一倍时,

shortcuts需要使用数量与输出channel相等

大小为1×11×1的卷积核进行卷积操作

若输出的图像较输入图像缩小一倍

设置shortcuts中卷积操作中的stride为2

主分支第一层卷积操作的stride也需设置为2

定义ResidualBlockBase类实现Building Block结构代码:

from typing import Type, Union, List, Optional
import mindspore.nn as nn
from mindspore.common.initializer import Normal
​
# 初始化卷积层与BatchNorm的参数
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)
​
class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支
​
        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

Bottleneck

Bottleneck结构图

Bottleneck结构的参数数量更少

更适合层数较深的网络

主分支有三层卷积结构

1×11×1的卷积层

输入channel为256

通过数量为64

降维

Batch Normalization层

Relu激活函数层

输出channel为64

3×33×3卷积层

通过数量为64

Batch Normalization层

Relu激活函数层

输出channel为64

1×11×1的卷积层

升维

通过数量为256

Batch Normalization层

输出channel为256

融合

主分支输出的特征矩阵

shortcuts输出的特征矩阵

保证特征矩阵shape相同

输出Relu激活函数

主分支与shortcuts输出的特征矩阵相加

如果shape不相同

如输出channel是输入channel的一倍时,

shortcuts上需要使用数量与输出channel相等

大小为1×11×1的卷积核进行卷积操作

如输出的图像较输入图像缩小一倍

设置shortcuts中卷积操作中的stride为2

主分支第二层卷积操作的stride也需设置为2

定义ResidualBlock类实现Bottleneck结构代码:

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)
​
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
​
        identity = x  # shortscuts分支
​
        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
​
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

2. 构建ResNet50网络

ResNet网络层结构

以输入彩色图像224×224为例

通过数量64

卷积核大小为7×7

stride为2的卷积层conv1

该层输出图片大小为112×112

输出channel为64;

通过3×3最大下采样池化层

输出图片大小为56×56

输出channel为64;

再堆叠4个残差网络块

conv2_x

conv3_x

conv4_x

conv5_x

输出图片大小为7×7

输出channel为2048

最后通过

平均池化层

全连接层

Softmax

得到分类概率。

以ResNet50网络中的conv2_x为例

每个残差网络块

由3个Bottleneck结构堆叠而成

每个Bottleneck

输入channel为64

输出channel为256

示例

定义make_layer实现残差块的构建,

参数如下:

last_out_channel:上一个残差网络输出的通道数

block: 残差网络的类别

ResidualBlockBase

ResidualBlock

channel: 残差网络输入的通道数

block_nums: 残差网络块堆叠的个数

stride: 卷积移动的步幅

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支
​
    if stride != 1 or last_out_channel != channel * block.expansion:
​
        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])
​
    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))
​
    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):
​
        layers.append(block(in_channel, channel))
​
    return nn.SequentialCell(layers)

ResNet50网络

5个卷积结构

1个平均池化层

1个全连接层

以CIFAR-10数据集为例:

conv1

输入图片大小为32×32

输入channel为3

卷积层

卷积核数量为64

卷积核大小为7×7

stride为2

Batch Normalization层

Reul激活函数

输出feature map大小为16×16

输出channel为64

conv2_x

输入feature map大小为16×16

输入channel为64

最大下采样池化操作

卷积核大小为3×3

stride为2

堆叠3个Bottleneck

[1×1,64;

3×3,64;

1×1,256]结构

输出feature map大小为8×8

输出channel为256

conv3_x

输入feature map大小为8×8

输入channel为256

堆叠4个Bottleneck

[1×1,128;

3×3,128;

1×1,512]结构

输出feature map大小为4×4

输出channel为512

conv4_x

输入feature map大小为4×4

输入channel为512

堆叠6个Bottleneck

[1×1,256;

3×3,256;

1×1,1024]结构

输出feature map大小为2×2

输出channel为1024

conv5_x

输入feature map大小为2×2

输入channel为1024

堆叠3个Bottleneck

[1×1,512;

3×3,512;

1×1,2048]结构。

输出feature map大小为1×1

输出channel为2048

average pool & fc

输入channel为2048

输出channel为分类的类别数

ResNet50模型构建代码

函数resnet50参数:

num_classes: 分类的类别数

默认类别数为1000。

Pretrained : 下载对应的训练模型

加载预训练模型中的参数

from mindspore import load_checkpoint, load_param_into_net
​
class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()
​
        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)
​
    def construct(self, x):
​
        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)
​
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
​
        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)
​
        return x

def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrained_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)
​
    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrained_ckpt, replace=True)
        param_dict = load_checkpoint(pretrained_ckpt)
        load_param_into_net(model, param_dict)
​
    return model
​
​
def resnet50(num_classes: int = 1000, pretrained: bool = False):
    """ResNet50模型"""
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

五、 模型训练与评估

ResNet50预训练模型微调:

调用resnet50构造ResNet50模型

设置pretrained参数为True

自动下载ResNet50预训练模型

加载预训练模型中的参数到网络中。

定义优化器和损失函数

逐epoch打印训练的损失值和评估精度

保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的./BestCheckPoint

预训练模型

全连接层(fc)输出大小(对应参数num_classes)默认为1000

CIFAR10数据集共有10个分类

重置全连接层输出大小为10

展示5个epochs的训练过程

# 定义ResNet50网络
network = resnet50(pretrained=True)
​
# 全连接层输入层的大小
in_channel = network.fc.in_channels
fc = nn.Dense(in_channels=in_channel, out_channels=10)
# 重置全连接层
network.fc = fc

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt (97.7 MB)

file_sizes: 100%|█████████████████████████████| 102M/102M [00:00<00:00, 109MB/s]
Successfully downloaded file to ./LoadPretrainedModel/resnet50_224_new.ckpt

# 设置学习率
num_epochs = 5
lr = nn.cosine_decay_lr(min_lr=0.00001, max_lr=0.001, total_step=step_size_train * num_epochs,
                        step_per_epoch=step_size_train, decay_epoch=num_epochs)
# 定义优化器和损失函数
opt = nn.Momentum(params=network.trainable_params(), learning_rate=lr, momentum=0.9)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
​
def forward_fn(inputs, targets):
    logits = network(inputs)
    loss = loss_fn(logits, targets)
    return loss
​
grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)
​
def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss

import os
​
# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
​
# 最佳模型存储路径
best_acc = 0
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best.ckpt"
​
if not os.path.exists(best_ckpt_dir):
    os.mkdir(best_ckpt_dir)

import mindspore.ops as ops
​
def train(data_loader, epoch):
    """模型训练"""
    losses = []
    network.set_train(True)
​
    for i, (images, labels) in enumerate(data_loader):
        loss = train_step(images, labels)
        if i % 100 == 0 or i == step_size_train - 1:
            print('Epoch: [%3d/%3d], Steps: [%3d/%3d], Train Loss: [%5.3f]' %
                  (epoch + 1, num_epochs, i + 1, step_size_train, loss))
        losses.append(loss)
​
    return sum(losses) / len(losses)
​
def evaluate(data_loader):
    """模型验证"""
    network.set_train(False)
​
    correct_num = 0.0  # 预测正确个数
    total_num = 0.0  # 预测总数
​
    for images, labels in data_loader:
        logits = network(images)
        pred = logits.argmax(axis=1)  # 预测结果
        correct = ops.equal(pred, labels).reshape((-1, ))
        correct_num += correct.sum().asnumpy()
        total_num += correct.shape[0]
​
    acc = correct_num / total_num  # 准确率
​
    return acc

# 开始循环训练
print("Start Training Loop ...")
​
for epoch in range(num_epochs):
    curr_loss = train(data_loader_train, epoch)
    curr_acc = evaluate(data_loader_val)
​
    print("-" * 50)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, curr_loss, curr_acc
    ))
    print("-" * 50)
​
    # 保存当前预测准确率最高的模型
    if curr_acc > best_acc:
        best_acc = curr_acc
        ms.save_checkpoint(network, best_ckpt_path)
​
print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

输出:

Start Training Loop ...
Epoch: [  1/  5], Steps: [  1/196], Train Loss: [2.412]
Epoch: [  1/  5], Steps: [101/196], Train Loss: [1.384]
Epoch: [  1/  5], Steps: [196/196], Train Loss: [0.991]
--------------------------------------------------
Epoch: [  1/  5], Average Train Loss: [1.590], Accuracy: [0.606]
--------------------------------------------------
Epoch: [  2/  5], Steps: [  1/196], Train Loss: [1.030]
Epoch: [  2/  5], Steps: [101/196], Train Loss: [0.892]
Epoch: [  2/  5], Steps: [196/196], Train Loss: [0.968]
--------------------------------------------------
Epoch: [  2/  5], Average Train Loss: [0.994], Accuracy: [0.692]
--------------------------------------------------
Epoch: [  3/  5], Steps: [  1/196], Train Loss: [0.774]
Epoch: [  3/  5], Steps: [101/196], Train Loss: [0.950]
Epoch: [  3/  5], Steps: [196/196], Train Loss: [0.642]
--------------------------------------------------
Epoch: [  3/  5], Average Train Loss: [0.836], Accuracy: [0.721]
--------------------------------------------------
Epoch: [  4/  5], Steps: [  1/196], Train Loss: [0.804]
Epoch: [  4/  5], Steps: [101/196], Train Loss: [0.824]
Epoch: [  4/  5], Steps: [196/196], Train Loss: [0.924]
--------------------------------------------------
Epoch: [  4/  5], Average Train Loss: [0.766], Accuracy: [0.737]
--------------------------------------------------
Epoch: [  5/  5], Steps: [  1/196], Train Loss: [0.843]
Epoch: [  5/  5], Steps: [101/196], Train Loss: [0.756]
Epoch: [  5/  5], Steps: [196/196], Train Loss: [0.965]
--------------------------------------------------
Epoch: [  5/  5], Average Train Loss: [0.737], Accuracy: [0.738]
--------------------------------------------------
================================================================================
End of validation the best Accuracy is:  0.738, save the best ckpt file in ./BestCheckpoint/resnet50-best.ckpt

六、可视化模型预测

定义visualize_model函数

使用验证精度最高的模型

预测CIFAR-10测试数据集

预测结果可视化

预测字体颜色为蓝色 表示预测正确

预测字体颜色为红色 表示预测错误

5 epochs模型在验证数据集的预测准确率在70%左右

6张图片中会有2张预测失败

要达到理想的训练效果,训练80个epochs

import matplotlib.pyplot as plt
​
def visualize_model(best_ckpt_path, dataset_val):
    num_class = 10  # 对狼和狗图像进行二分类
    net = resnet50(num_class)
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    # 加载验证集的数据进行验证
    data = next(dataset_val.create_dict_iterator())
    images = data["image"]
    labels = data["label"]
    # 预测图像类别
    output = net(data['image'])
    pred = np.argmax(output.asnumpy(), axis=1)
​
    # 图像分类
    classes = []
​
    with open(data_dir + "/batches.meta.txt", "r") as f:
        for line in f:
            line = line.rstrip()
            if line:
                classes.append(line)
​
    # 显示图像及图像的预测值
    plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'
        plt.title('predict:{}'.format(classes[pred[i]]), color=color)
        picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))
        mean = np.array([0.4914, 0.4822, 0.4465])
        std = np.array([0.2023, 0.1994, 0.2010])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')
​
    plt.show()
​
​
# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)

输出:

相关推荐
Nu11PointerException1 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
亦枫Leonlew3 小时前
三维测量与建模笔记 - 3.3 张正友标定法
笔记·相机标定·三维重建·张正友标定法
考试宝3 小时前
国家宠物美容师职业技能等级评价(高级)理论考试题
经验分享·笔记·职场和发展·学习方法·业界资讯·宠物
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
YRr YRr4 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20244 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客5974 小时前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食4 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding