sklearn基础教程

Scikit-learn(简称sklearn)是Python中一个功能强大的机器学习库,它提供了大量的工具用于数据预处理、模型训练、模型评估等,并支持多种机器学习算法。以下是一个详细的sklearn基础教程:

一、安装scikit-learn

  1. 打开命令行界面

    • 在Windows上是命令提示符或PowerShell。
    • 在macOS和Linux上是终端。
  2. 安装命令

    使用pip安装scikit-learn:

    bash 复制代码
    pip install scikit-learn

    或者,如果你使用的是Python 3,可以使用:

    bash 复制代码
    pip3 install scikit-learn

    如果在使用虚拟环境,请确保已激活相应的环境。

  3. 确认安装

    安装完成后,可以通过以下命令确认scikit-learn是否已成功安装:

    python 复制代码
    import sklearn
    print(sklearn.__version__)

二、导入scikit-learn

在Python脚本中,你可以使用import语句来导入scikit-learn库中的模块和类。例如:

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix

三、加载数据集

scikit-learn提供了多种标准数据集,如Iris、Digits等,可以直接用于练习。例如,加载Iris数据集:

python 复制代码
iris = datasets.load_iris()
X = iris.data  # 特征数据
y = iris.target  # 目标变量

四、数据预处理

  1. 数据清洗

    • 处理缺失值、异常值等。
  2. 数据缩放

    • 使用StandardScaler进行标准化,使数据均值为0,标准差为1。
    python 复制代码
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
  3. 编码分类变量

    • 对于非数值型的分类变量,可以使用LabelEncoderOneHotEncoder进行编码。

五、划分数据集

将数据集分为训练集和测试集:

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

六、选择并训练模型

  1. 选择模型

    • scikit-learn支持多种机器学习算法,如线性回归、逻辑回归、支持向量机、决策树、随机森林等。
  2. 训练模型

    以逻辑回归为例:

    python 复制代码
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression()
    model.fit(X_train, y_train)

七、模型评估

使用测试集评估模型性能:

python 复制代码
from sklearn.metrics import accuracy_score
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

八、其他功能

  1. 交叉验证

    • 使用KFoldStratifiedKFold等工具评估模型的泛化能力。
  2. 模型选择

    • 使用GridSearchCVRandomizedSearchCV进行超参数搜索和模型选择。
  3. 流水线(Pipeline)

    • 将多个步骤(如数据预处理、模型训练等)组合在一起,方便使用和管理。

九、进阶用法

  • 自定义模型

    • 可以通过继承scikit-learn的基类(如BaseEstimatorClassifierMixin)来创建自定义的机器学习模型。
  • 集成学习

    • 利用scikit-learn的集成学习模块(如ensemble)来组合多个基学习器,提高模型的性能。

通过掌握以上基础知识和进阶用法,你可以利用scikit-learn库轻松地进行数据预处理、模型训练和评估等工作。希望这个教程能帮助你快速入门scikit-learn并应用于实际项目中。

相关推荐
不去幼儿园21 分钟前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
想成为高手49926 分钟前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
YSGZJJ1 小时前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞1 小时前
COR 损失函数
人工智能·机器学习
幽兰的天空1 小时前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
HPC_fac130520678162 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou5 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书5 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd5 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao6 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama