Poincaré图和SD2计算参考

在Poincaré图分析中,SD2代表心率变异性的长期变化,它测量NN间期数据点沿着Poincaré图主对角线方向的分散程度。SD2描述了NN间期的整体波动,通常更多地关联于自主神经系统的调节和生理应激反应。

如何计算 Poincaré SD2

Poincaré图将每个心跳间期 (NN_i) 与下一个心跳间期 (NN_{i+1}) 作为一个点 ( (NN_i, NN_{i+1}) ) 绘制在二维空间中。SD2通常通过以下步骤计算:

  1. 收集数据:准备连续心跳间期(NN间期)数据。

  2. 创建点对:对每个 (NN_i),创建点对 ((NN_i, NN_{i+1}))。

  3. 计算点到对角线的投影 :在Poincaré图中,每个点到主对角线的距离可以代表为点到线的垂直距离,但SD2测量的是沿对角线的标准差,即:

    \\text{投影} = \\frac{NN_{i+1} + NN_i}{\\sqrt{2}}

  4. 计算标准差:计算所有投影值的标准差,得到SD2。

具体计算公式为:

SD2 = \\sqrt{\\frac{1}{N-1} \\sum_{i=1}\^{N-1} \\left(\\text{投影}_i - \\overline{\\text{投影}} \\right)\^2}

其中,( \overline{\text{投影}} ) 是所有投影值的平均值,( N ) 是NN间期的数量。

示例代码

以下是一个用Python实现计算SD2的示例代码:

python 复制代码
import numpy as np

def calculate_SD2(NN_intervals):
    # 计算每个点到对角线的投影
    projections = [(NN_intervals[i] + NN_intervals[i+1]) / np.sqrt(2) for i in range(len(NN_intervals) - 1)]
    # 计算投影的标准差
    SD2 = np.std(projections)
    return SD2

# 示例NN间期数据
NN_intervals = [800, 815, 830, 845, 860, 850, 840]
SD2 = calculate_SD2(NN_intervals)
print("SD2 (ms):", SD2)

此代码先计算每对连续NN间期的对角线投影,然后计算这些投影值的标准差,得到SD2。这种分析帮助评估心率变异性中的长期组成部分,对研究生理和病理条件下的心脏功能变化尤为重要。

相关推荐
五月君_1 天前
炸裂!Claude Opus 4.6 与 GPT-5.3 同日发布:前端人的“自动驾驶“时刻到了?
前端·gpt
l1t1 天前
DeepSeek总结的PostgreSQL的GPT推理SQL移植到DuckDB的性能优化方法
sql·gpt·postgresql
程序员Sunday1 天前
说点不一样的。GPT-5.3 与 Claude Opus 4.6 同时炸场,前端变天了?
前端·gpt·状态模式
刘大大Leo2 天前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
acai_polo3 天前
如何在国内合规、稳定地使用GPT/Claude/Gemini API?中转服务全解析
人工智能·gpt·ai·语言模型·ai作画
迈火4 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
空中楼阁,梦幻泡影4 天前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
晓晓不觉早5 天前
OpenAI Codex App的推出:多代理工作流的新时代
人工智能·gpt
kebijuelun5 天前
Towards Automated Kernel Generation in the Era of LLMs:LLM 时代的自动化 Kernel 生成全景图
人工智能·gpt·深度学习·语言模型
卖芒果的潇洒农民7 天前
20260201 GPT VPC中的CIDR Block 概念
笔记·gpt