Poincaré图和SD2计算参考

在Poincaré图分析中,SD2代表心率变异性的长期变化,它测量NN间期数据点沿着Poincaré图主对角线方向的分散程度。SD2描述了NN间期的整体波动,通常更多地关联于自主神经系统的调节和生理应激反应。

如何计算 Poincaré SD2

Poincaré图将每个心跳间期 (NN_i) 与下一个心跳间期 (NN_{i+1}) 作为一个点 ( (NN_i, NN_{i+1}) ) 绘制在二维空间中。SD2通常通过以下步骤计算:

  1. 收集数据:准备连续心跳间期(NN间期)数据。

  2. 创建点对:对每个 (NN_i),创建点对 ((NN_i, NN_{i+1}))。

  3. 计算点到对角线的投影 :在Poincaré图中,每个点到主对角线的距离可以代表为点到线的垂直距离,但SD2测量的是沿对角线的标准差,即:

    \\text{投影} = \\frac{NN_{i+1} + NN_i}{\\sqrt{2}}

  4. 计算标准差:计算所有投影值的标准差,得到SD2。

具体计算公式为:

SD2 = \\sqrt{\\frac{1}{N-1} \\sum_{i=1}\^{N-1} \\left(\\text{投影}_i - \\overline{\\text{投影}} \\right)\^2}

其中,( \overline{\text{投影}} ) 是所有投影值的平均值,( N ) 是NN间期的数量。

示例代码

以下是一个用Python实现计算SD2的示例代码:

python 复制代码
import numpy as np

def calculate_SD2(NN_intervals):
    # 计算每个点到对角线的投影
    projections = [(NN_intervals[i] + NN_intervals[i+1]) / np.sqrt(2) for i in range(len(NN_intervals) - 1)]
    # 计算投影的标准差
    SD2 = np.std(projections)
    return SD2

# 示例NN间期数据
NN_intervals = [800, 815, 830, 845, 860, 850, 840]
SD2 = calculate_SD2(NN_intervals)
print("SD2 (ms):", SD2)

此代码先计算每对连续NN间期的对角线投影,然后计算这些投影值的标准差,得到SD2。这种分析帮助评估心率变异性中的长期组成部分,对研究生理和病理条件下的心脏功能变化尤为重要。

相关推荐
相思半2 天前
告别聊天机器人!2026 智能体元年:Claude 4.6 vs GPT-5.3 vs OpenClaw 全方位对比
人工智能·gpt·深度学习·claude·codex·智能体·seedance
冬奇Lab2 天前
一天一个开源项目(第22篇):nanochat - 百元级「最好的 ChatGPT」,Karpathy 的极简 LLM 训练套件
人工智能·gpt·chatgpt
赛博鲁迅2 天前
dify添加中转站模型教程
人工智能·gpt·aigc·ai编程·dify·ai-native
向量引擎小橙2 天前
从“对话助手”到“数字架构师”:Claude 4.6 Opus 如何凭一己之力,终结全球程序员的“CRUD 焦虑”?
人工智能·python·gpt·深度学习
DisonTangor2 天前
介绍 GPT‑5.3‑Codex‑Spark
大数据·gpt·spark
骇城迷影3 天前
从零复现GPT-2 124M
人工智能·pytorch·python·gpt·深度学习
赛博鲁迅3 天前
coze 工作流使用中转API 教程
gpt·大模型·ai编程·agi·gemini·coze
代码AI弗森3 天前
243 行 microGPT:把“训练 + 推理”拆到骨头里
gpt
向量引擎4 天前
别再问GPT-5.3怎么还没记忆了!你的AI还没装“海马体”?揭秘让OpenClaw起飞的幕后大佬:高性能向量引擎实战指南(附Clawdbot保姆级配置)
人工智能·gpt·aigc·agi·api调用
老金带你玩AI4 天前
DeepSeek V4春节炸场,三大黑科技让Claude和GPT都坐不住了
人工智能·科技·gpt