一种非平稳信号滤波方法:基于短时傅里叶变换STFT的维纳滤波(MATLAB)

复制代码
clear all
clc
close all
% Synthetized signal
% Sampling frequency 1 kHz
% Chirp: start at 50 Hz and cross 450 Hz at 10 s with strong Gussian background noise (SNR -18 dB)
fs = 1000;
T = 10;
t=0:1/fs:T;
r=chirp(t,50,T,450);
L = length(r);
wnoise = 6 .* randn(size(r));
x = wnoise + r;

figure
spectrogram(r,256,250,256,1E3);
view(-45,65)
colormap bone
title('Reference signal')


figure
subplot(1,2,1)
spectrogram(x,256,250,256,1E3);
view(-45,65)
colormap bone
title('Noisy signal')

Lw = 256;
[xest,B,Nblocks] = ADwienerFilt(x,r,Lw);

subplot(1,2,2)
spectrogram(xest,256,250,256,1E3);
view(-45,65)
colormap bone
title('Estimated signal')

function [xest,W,Nblocks] = ADwienerFilt(x,r,Lw)
%
% Wiener filter based on STFT
%   This function takes as inputs a noisy signal, x, and a reference signal, r,
%   in order to compute a bank of linear filters that provides an estimate of y
%   from x. This kind of Wiener filter based on short-time Fourier
%   transform so it can deal with non-stationary signals.
%
%   Note 1: window length (Lw) must be even
%   Note 2: overlap is fixed at 50%
%   Note 3: the filtered signal can be shortened
%
% INPUTS
% x = noisy signal
% r = reference signal
% Nw = window length
% Nblocks = total number of segments
%
% OUTPUTS
% xest = estimated signal
% W = matrix of Wiener filters

% window length must be even
if mod(Lw,2)~=0
    Lw = Lw - 1;
    disp('Window length must be an even number. Lw has been changed accordingly.')
end

L = length(x);
win = hanning(Lw);
overlap = Lw/2;
Nblocks = floor((L / (Lw/2) ) - 1);

Sxx = zeros(Nblocks,Lw);
Sxr = zeros(Nblocks,Lw);
W  = zeros(Nblocks,Lw);
xest = zeros(size(r));
ind = 1:Lw;

for j = 1:Nblocks
    
    temp = zeros(size(r));
        
    X = 1/Lw .* fft(x(ind));
    R = 1/Lw .* fft(r(ind));
    Sxx(j,:) = X .* conj(X);
    Sxr(j,:) = X .* conj(R);
    W(j,:) = Sxr(j,:) ./ Sxx(j,:);
        
    temp(ind) = Lw/2 * ifft(W(j,:) .* X);  
    xest = xest + temp;
        
    ind = ind + Lw/2;
    
end

ind = ind - Lw/2;

if L ~= ind(end)
    disp('Note that the length of the recovered signal has been shortened!')
end

xest((ind(end)+1):L)=[];
复制代码
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
知乎学术咨询:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1
相关推荐
蚂蚁在飞-几秒前
Golang基础知识—cond
开发语言·后端·golang
Brilliant Nemo12 分钟前
Vue2项目中使用videojs播放mp4视频
开发语言·前端·javascript
TNTLWT31 分钟前
Qt控件:交互控件
开发语言·qt
量化金策33 分钟前
震荡指标工具
开发语言
北漂老男孩35 分钟前
ChromeDriver进程泄漏问题分析与最佳实践解决方案
开发语言·爬虫
李迟40 分钟前
Golang实践录:在go中使用curl实现https请求
开发语言·golang·https
运维-大白同学2 小时前
go-数据库基本操作
开发语言·数据库·golang
动感光博2 小时前
Unity(URP渲染管线)的后处理、动画制作、虚拟相机(Virtual Camera)
开发语言·人工智能·计算机视觉·unity·c#·游戏引擎
tyatyatya2 小时前
神经网络在MATLAB中是如何实现的?
人工智能·神经网络·matlab
缘友一世2 小时前
PyTorch深度神经网络(前馈、卷积神经网络)
pytorch·cnn·dnn