行人越界检测 越线 越界区域 多边形IOU越界判断

行人越界判断

越界判断方式:(1)bbox中心点越界(或自定义)(2)交并比IoU判断

越界类型:(1)越线 (2)越界区域
1.越线判断

bbox中心点xc、yc判断是否越线

复制代码
import cv2
def is_passing_line(point, polyline):  # 在直线上方,status =1   下方,status =-1 
	status = 1   
	poly_y = ((polyline[1][1] - polyline[0][1]) * (point[0] - polyline[0][0])) / (polyline[1][0] - polyline[0][0]) +  polyline[0][1] # 点映射在直线的高度
	if point[1] > poly_y:
		status = -1
	return status
	
pt = [xc,yc]
lines = [[x1,y1],[x2,y2]]
cv2.line(img,(x1,y1),(x2,y2),(255,0,0),2)
cv2.circle(img, pt, 4, (0,0,255), -1)	
status = is_passing_line(pt,lines)
cv2.imwrite('color_line.jpg',img)
print('status up 1 down -1:',status)

2.越界判断

bbox中心点xc、yc判断是否在多边形区域内

复制代码
import cv2
import numpy as np
import matplotlib.path as mplPath

pt=[1067,382] #bbox 中心点xc,yc
POLYGON = np.array([[870, 163],[1022, 180],[1060, 415],[954, 713],[727, 658],])
imgpath = 'demo.jpg'
img = cv2.imread(imgpath)
cv2.polylines(img, [POLYGON], True, (144, 238, 144), 2)
cv2.circle(img, pt, 4, (0,0,255), -1)
is_in = mplPath.Path(POLYGON).contains_point(pt)
cv2.imwrite('color.jpg',img)
print('is_in:',is_in) # True即在多边形区域内

3.矩形IoU越界判断

二者皆为矩形

复制代码
def iou(box1, box2):                                           
    '''                                                        
    box: [ 0,  1,  2,  3]                                      
    box: [x1, y1, x2, y2],依次为左上右下坐标                  
    '''                                                        
    w = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0]))  
    h = max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))  
    Inter = w * h                                              
    S_box1 = (box1[2]-box1[0]) * (box1[3]-box1[1])             
    S_box2 = (box2[2]-box2[0]) * (box2[3]-box2[1])             
    Union = S_box1 + S_box2 - Inter                            
    iou = Inter / Union                                        
    return iou                                                 
box1 = [100, 100, 200, 200]                                    
box2 = [100, 150, 200, 250]                                    
IoU = iou(box1, box2)                                          
print(IoU)

4.多边形IoU越界判断

支持任意多边形二者之间IoU计算

复制代码
from shapely.geometry import Polygon                               
                                                                                  
poly1 = [(100, 100),(50,150), (100, 200), (200, 200), (200, 100)]   #逆时针顶点坐标
poly2 = [(100, 150), (100, 250), (200, 250), (200, 150)]           
                                                                   
# 创建多边形                                                       
poly1 = Polygon(poly1)                                             
poly2 = Polygon(poly2)                                             
                                                                   
# 计算交集和并集                                                   
intersection = poly1.intersection(poly2)                           
union = poly1.union(poly2)                                         
                                                                   
# 计算IoU                                                          
iou = intersection.area / union.area                               
print(f"IoU: {iou}") 
相关推荐
兴趣使然黄小黄3 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭3 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t3 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
ζั͡山 ั͡有扶苏 ั͡✾3 小时前
从零搭建 Data-Juicer:一站式大模型数据预处理与可视化平台完整教程
python·data-juicer
说私域3 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
SkylerHu4 小时前
tornado+gunicorn部署设置max_body_size
python·tornado·gunicorn
开利网络4 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师4 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
独行soc5 小时前
2025年渗透测试面试题总结-234(题目+回答)
网络·python·安全·web安全·渗透测试·1024程序员节·安全狮
木头左5 小时前
年化波动率匹配原则在ETF网格区间选择中的应用
python