安宝特案例丨AR+AI赋能轨道交通制造:破解人工装配难题的创新实践

在轨道交通装备制造领域,小批量、多品种 的生产特性与高度依赖人工经验 的作业模式长期并存,导致效率瓶颈与质量隐患并存。安宝特通过AR(增强现实)+AI(人工智能)技术融合,在螺栓紧固、内饰装配、制动系统等关键环节打造可视化智能解决方案,实现了生产模式的数字化革新。

典型应用场景

1 Arbigtec 智能螺栓紧固:从经验驱动到数据赋能

**场景痛点:**列车车厢螺栓连接作业中,扭矩控制不精准、紧固顺序混乱等问题频发,传统人工操作合格率仅75%,返工率居高不下。

技术突破:

  • **AR可视化指导:**眼镜镜片实时叠加螺栓编号、旋转角度及扭矩数值,以动态箭头指引操作顺序,红色警示标识防止跳步作业。
  • **AI过程监控:**通过摄像头捕捉螺栓姿态,AI算法实时分析螺纹啮合度、倾斜角度,对扭矩异常(±5%偏差)立即触发声光报警。
  • 质量追溯体系: 平板端自动生成包含操作人员、时间戳、扭矩曲线的电子化记录,与MES系统无缝对接,实现全流程可追溯。

成效数据:

作业效率提升40%,扭矩合格率跃升至98%,返工率下降60%,单节车厢螺栓装配时间缩短2.3小时。

2 Arbigtec 精密制动系统:AI守卫安全底线

**场景痛点:**制动系统管路连接密封圈错位、液压泄漏等问题占比达12%,传统目视检测难以捕捉0.1mm级微小缺陷。

解决方案:

  • **AR辅助装配:**眼镜投射制动管路三维剖视图,标注密封圈安装位置及公差范围(±0.2mm),实时显示液压测试标准压力值。
  • **AI缺陷识别:**采用工业相机拍摄管路接口,AI模型比对标准螺纹形态,自动标记锈蚀、变形区域;热成像技术监测液压油流动状态,预警泄漏风险。

关键指标:

制动系统泄漏率降低90%,液压测试周期从4小时压缩至1.5小时,质量门通过率提升至99.5%。

3 Arbigtec 内饰装配:3D模型驱动效率飞跃

**场景痛点:**座椅、照明等部件安装依赖纸质手册,部件错装率达8%,单节车厢内饰装配需72工时。

创新实践:

  • **动态SOP指引:**扫描部件二维码即调取三维装配动画,以爆炸视图分解座椅骨架、线束走向等复杂结构。
  • **AI智能校准:**通过深度学习识别部件边缘特征,实时计算座椅间距误差(精度±0.5mm),超差时自动标注修正位置。
  • 数据闭环管理: 装配参数、扭矩值、间隙数据自动上传至质量管理系统,生成符合EN 15085标准的验收报告。

价值提升:

装配错误率下降65%,单节车厢工期缩短至50.4工时,人力成本降低35%。

未来展望

随着5G+工业互联网渗透,AR+AI解决方案将向预测性维护、供应链协同等场景延伸,推动轨道交通制造向"零缺陷"目标迈进。这一技术变革不仅重塑了作业模式,更标志着中国高端装备制造业数字化转型迈入深水区。

相关推荐
لا معنى له18 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI19 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.21 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight21 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha1 天前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir1 天前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王1 天前
COCO 数据集
人工智能·机器学习
AI营销实验室1 天前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛111 天前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI1 天前
RAG系列(一) 架构基础与原理
人工智能·架构