Python 性能分析的几个方法,找到你代码中的那个她🤪

Python 性能分析的几个方法,找到你代码中的那个她

我们在编写了一个脚本在笔记本上处理一些数据,然后去喝杯咖啡或者上了个厕所,15分钟后回来时发现进度才完成不到10%。

我们的脑袋里面就会发问:为什么这么慢?究竟是在哪个部分是慢的?是读取数据、处理数据还是保存数据?如何让它变快?它真的很慢吗?

有了这个疑问我们尝试去解决这个问题,下面我们介绍几个 python 性能分析的工具。

什么是性能分析

分析器是一种工具,它接收代码,运行它,并收集关于每个函数调用花费了多少时间、被执行了多少次以及函数调用的层次结构等信息。

通过分析其输出,我们可以找出代码中哪部分执行时间最长(称为瓶颈),甚至可能想出解决方法。希望识别和解决瓶颈问题,从而实现整体速度上的最大改进。

问题示例:

假设我们有一个大文本文件,想要在其中找到某个特定模式的多个出现。首先,让我们生成一个由随机字母数字字符组成的大文件(逐行生成):

python 复制代码
 import random
 import string
 ​
 def generate_random_string(length):
     """生成一个由小写字母和数字组成的随机字符串。"""
     letters_and_digits = string.ascii_letters + string.digits
     return ''.join(random.choice(letters_and_digits) for _ in range(length))
 ​
 def generate_random_file(filename, num_lines, line_length):
     """生成一个指定数量和长度的随机行文件。"""
     with open(filename, 'w') as f:
         for i in range(num_lines):
             random_line = generate_random_string(line_length) + '\n'
             f.write(random_line)
 ​
 if __name__ == '__main__':
     #生成1000000行,每行1000个字符
     generate_random_file('random.txt', 1_000_000, 1000)  

接下来,让我们定义基准函数------它逐行读取文件,然后计算以数字为前缀的单词bobrob在其中出现的次数:

python 复制代码
 import re
 ​
 def baseline():
     num_total_matches = 0
     pattern1 = r"[0-9]{1}bob" # 正则表达式
     pattern2 = r"[0-9]{1}rob" # 正则表达式
     
     with open('random.txt', 'rt') as f:
         for line in f:
             line = line.lower()  # 将文本全部为小写。
             for pattern in [pattern1, pattern2]:
                 # 在字符串中找到模式的所有匹配项
                 matches = re.findall(pattern, line)
 ​
                 # 统计出现的次数
                 num_matches = len(matches)
                 num_total_matches += num_matches
             
     return num_total_matches

例如,一行abc1robdef02bob中有两个出现。

我们运行baseline函数,计算出现次数(在我的情况下为10861),并测量运行时间 --- 在我的机器上为32秒。

我们如何加快速度?

改进目标

代码中有四个潜在部分导致运行速度变慢。

  1. 使用原始字符串而不是编译后的正则表达式对象。
  2. 使用两个单独的搜索,而不是一个联合的正则表达式。
  3. 将每一行转换为小写,而不是使用不区分大小写标志。
  4. 逐行读取文件,而不是较大的块。

我们如何知道哪一个是瓶颈?我们可以使用性能分析工具。

Python性能分析工具

我们不必自己实现任何功能代码。Python已经有两个内置的性能分析模块 --- cProfileprofile。它们执行相同的功能,但 cProfile 是用C编写的,而 profile 则是纯Python编写的。你可以直接使用它们,不过我们使用一些外部工具,这将大大提升我们的工作效率。

我们需要一种快速便捷的方式来对代码的一部分(例如一个函数)进行性能分析,并将结果保存到文件中。profilehooks模块提供了一个简单装饰器,我们可以像这样使用到我们需要检测的函数:

python 复制代码
 from profilehooks import profile
 ​
 # stdout=False -> don't print anything in the terminal
 # filname -> path to the output file with profiling results
 @profile(stdout=False, filename='baseline.prof')
 def baseline():
     ...

可以通过简单的 pip install profilehooks 命令进行安装。

我们需要以人类可读的方式来展示这个文件。我使用以下两种工具进行操作。

SnakeViz --- 简单快速

SnakevizPython 分析结果的交互式可视化工具,可以在浏览器中使用。

安装非常简单(pip install snakeviz),使用也很方便(snakeviz <path-to-profiling-output>)。

让我们看看我们的 baseline 函数的分析结果如何。

Snakeviz 交互式结果 --- icicle (左侧)和sunburst(右侧,可能不太易读)图表。我们可以悬停并单击每个函数调用以查看其详细信息。从上到下是调用的嵌套层次结构,线条的长度表示代码执行该部分所花费的相对时间。

Snakeviz 还显示了一个交互式表格,其中包含函数执行时间的统计信息。

我们可以看到大部分执行时间都花费在findall函数内部,也就是进行正则表达式搜索。这意味着,如果我们想加快代码运行速度,需要专注于加快该函数的速度,因为它是瓶颈所在,并非代码的其他部分。

让我们用第二个工具来确认结果。

gprof2dot --- 可读性强且灵活

Gprof2dot 提供更易读的可视化,以流程图的形式保存为图片文件,因此很容易分享(并在必要时自动化)结果。然而它不是交互式的,并且需要系统中安装Graphviz

要安装 gprof2dot,只需使用 pip install gprof2dot 命令。

要生成带有性能分析结果的输出图像,请使用以下命令:

lua 复制代码
 python -m gprof2dot -f pstats <profiling-results-file> | dot -Tpng -o output.png

我们首先将函数调用的层次结构表示为dot格式的图形,然后生成一幅图像 --- 显示该图形。dot命令支持不同的输出格式,包括.jpg.svg,而且 gprof2dot 的输出也具有高度可定制性。

我们代码中函数执行层次结构的图形表示。百分比显示了在函数内部花费的总执行时间比例. 但这些仅包括自身函数的代码。最后一个值是该函数在代码中被调用的次数。

可以说现在更易读了,图表告诉我们正则表达式搜索占据了总执行时间的88%,因此我们需要专注于让它变得更快。

如果无法访问Graphviz(dot命令),您可以使用对应的Graphviz Python包pip install graphviz)和一个简单的Python脚本来生成结果。

  1. 我们将把 gprof2dot 的输出保存到一个 .dot 文件中: python -m gprof2dot -f pstats file.prof > file.dot
  2. 我们将使用以下代码从这个.dot文件生成图片:
ini 复制代码
 import graphviz
     
 def make_png(input_file_name, output_file_name):
     dot = graphviz.Source.from_file(input_file_name)
     dot.render(outfile=output_file_name)
     
 if __name__ == '__main__':
     make_png('file.dot', 'file.svg')  # 还支持 .png、.jpg 等格式。

代码改进

让我们通过将两个正则表达式合并为一个来加快代码速度:

python 复制代码
 def single_pattern():
     num_total_matches = 0
     pattern = r"[0-9][rb]ob"  # 我们现在只有一个搜索
     
     with open('random.txt', 'rt') as f:
         for line in tqdm(f, total=1_000_000):
             line = line.lower()
             # 在字符串中找到模式的所有匹配项
             matches = re.findall(pattern, line)
 ​
             # 计算比赛的数量
             num_matches = len(matches)
             num_total_matches += num_matches
         
     return num_total_matches

现在我们可以达到15秒,速度提高了约2倍!

新代码的性能分析结果。请注意findall函数所占用时间的百分比下降了(从88% -> 81.5%)

对新代码进行性能分析证实这是正确的选择 --- 主要findall函数所占用时间比例下降,而其他所有函数所占用时间增加(大约增加了2倍)。

python 复制代码
 def wasted_efforts():
     num_total_matches = 0
     # 我们使用编译后的正则表达式
     pattern1 = re.compile(r"[0-9]{1}rob", flags=re.IGNORECASE)
     # 我们还使用不区分大小写的情况。
     pattern2 = re.compile(r"[0-9]{1}bob", flags=re.IGNORECASE)
     
     with open('random.txt', 'rt') as f:
         # 我们将行加载到一个块中,并一次性处理。
         chunk = []
         for line in tqdm(f, total=1_000_000):
             chunk.append(line)
             
             if len(chunk) == 1000:
                 chunk_str = ''.join(chunk)
                 for pattern in [pattern1, pattern2]:
                     # 在字符串中找到模式的所有匹配项
                     matches = re.findall(pattern, chunk_str)
 ​
                     # 计算数量
                     num_matches = len(matches)
                     num_total_matches += num_matches
                     
                 chunk = []
 ​
     # 尽管我们修改了代码,但这段代码仍然和原始版本一样慢。
     return num_total_matches

多进程处理

findall 函数仍然是瓶颈。然而,在这个示例中,我们只能做一件直接的事情来进一步改进它:并行执行我们的代码。

不同字符串中的匹配是相互独立的,因此我们可以并行搜索它们。我们该如何做呢?

最简单的方法是创建一个进程池 --- 一个操作多个并行 Python 进程的对象,所有进程都同时运行。

如果我们有一个值列表和要应用于每个值的函数,只需调用池的 map 方法,它将并行地在所有值上为我们运行函数。

python 复制代码
 from multiprocessing import Pool
 ​
 def calc_num_matches(string):
     # 我们为我们的池对象创建一个单独的函数
     # 并行应用于文件中的每一行
     pattern = r"[0-9]{1}[rb]ob"
     return len(re.findall(pattern, string))
 ​
 def chunks_single_pool():
     num_total_matches = 0
     
     pool = Pool(8)  # 进程数量应该小于或等于 CPU 核心数。
     
     with open('random.txt', 'rt') as f:
         chunk = []
         # 我们将行加载到列表中
         for line in tqdm(f, total=1_000_000):
             line = line.lower()
             chunk.append(line)
             
             if len(chunk) == 1000:
                 # 然后我们并行地将我们的 `calc_num_matches` 函数应用于每一行
                 num_ind_matches = pool.map(calc_num_matches, chunk)
                 # 将所有独立匹配项相加。
                 num_matches = sum(num_ind_matches)
                 num_total_matches += num_matches
 ​
                 chunk = []
     
     return num_total_matches

让我们看看......6.1秒!这是一个新纪录。比我们优化的解决方案快2.2倍,比原始版本快约5倍!让我们来看一下性能分析结果:

多进程代码的性能分析结果。请注意正则表达式搜索所占比例不断减少(绿色块)。

Snakeviz显示多进程代码的相同图片。确认正则表达式搜索现在占据总时间的大约2/3,比原始版本少得多。

注意事项

多进程

需要注意是,分析器不再知道子进程中进行正则表达式搜索时发生了什么。它只显示等待所有子进程完成花费了4秒的时间,但由于它们基本上是与我们主要的Python进程松散连接的独立程序,因此无法访问在子进程中执行的代码。

如果你想分析程序中子进程的运行情况,应该将@profile装饰器放在将由子进程执行的函数/代码内部。

多线程

通常情况下,由于全局解释器锁(Global Interpreter Lock,GIL)的限制,不必直接编写多线程 Python 代码,因为 GIL 一次只允许一个线程执行 Python 代码(在单个 Python 进程内)。

然而,如果你在使用大量非Python库(例如NumPyPyTorchscipy)或进行大量I/O操作(网络通信),那么你的代码运行时大部分时间将花费在Python解释器之外执行用C、C++、Fortran等语言编写的代码上。

在这两种情况下,利用多线程可能是实际的,因此需要意识到 Python 的两个内置性能分析模块 --- profile 和 cProfile --- 仅对应用程序的主线程进行性能分析。如果想要对除主线程之外的其他线程执行的代码进行性能分析,可以尝试在将要执行线程的函数中运行分析器,或者使用一些第三方性能分析工具如 VizTracer

总结

本文我们以示例演示一个存在性能问题的代码,并使用工具分析的场景。

在处理数据时遇到代码运行缓慢的问题,需要找出瓶颈所在并进行优化。通过生成大文本文件并定义基准函数来计算特定模式的出现次数,初始运行时间较长,需要加快速度。

解决方案

  1. 使用 SnakeVizgprof2dot 等性能分析工具,找出主要瓶颈为 findall 函数中的正则表达式搜索。
  2. 将两个正则表达式合并为一个,使运行速度提高约 2 倍。
  3. 采用多进程处理,创建进程池并行执行代码,使运行速度比优化后的解决方案快 2.2 倍,比原始版本快约 5 倍。

注意事项

  1. 多进程方面,分析器无法知晓子进程中的正则表达式搜索情况,若要分析子进程,应将装饰器放在子进程执行的函数内。
  2. 多线程方面,由于全局解释器锁限制,通常不必直接编写多线程 Python 代码。若使用大量非 Python 库或大量 I/O 操作,利用多线程可能有效。Python 内置性能分析模块仅对应用程序的主线程进行性能分析,若要分析其他线程,可在相关函数中运行分析器或使用第三方工具如 VizTracer
相关推荐
Estar.Lee5 分钟前
时间操作[计算时间差]免费API接口教程
android·网络·后端·网络协议·tcp/ip
drebander27 分钟前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
新知图书1 小时前
Rust编程与项目实战-模块std::thread(之一)
开发语言·后端·rust
威威猫的栗子1 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
盛夏绽放1 小时前
Node.js 和 Socket.IO 实现实时通信
前端·后端·websocket·node.js
Ares-Wang1 小时前
Asp.net Core Hosted Service(托管服务) Timer (定时任务)
后端·asp.net
墨染风华不染尘1 小时前
python之开发笔记
开发语言·笔记·python
Dxy12393102162 小时前
python bmp图片转jpg
python
麦麦大数据2 小时前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习
LKID体2 小时前
Python操作neo4j库py2neo使用之创建和查询(二)
数据库·python·neo4j