Pytorch张量

在conda的环境中安装Jupyter及其他软件包
Pytorch 建立在张量(tensor)之上,Pytorch张量是一个 n 维数组,类似于 NumPy 数组。专门针对GPU设计,可以运行在GPU上以加快计算效率。换句话说,Pytorch张量是可以运行在GPU上的多维数据。

目录

基础语法

定义张量数据类型

默认数据类型

指定数据类型

改变张量数据类型

张量与Numpy数组间的转换

[将张量转换为 Numpy 数组](#将张量转换为 Numpy 数组)

[将 Numppy 数组转换为张量](#将 Numppy 数组转换为张量)

在设备间移动张量

默认在CPU上定义张量

定义CUDA设备

将张量移动到CUDA设备

将张量移动到CPU

在任意设备上定义张量


基础语法

Pytorch张量 Numpy数组
torch.ones(.) numpy.ones(.) 创建一个一数组
torch.zeros(.) numpy.zeros(.) 创建一个零数组
torch.rand(.) numpy.random.rand(.) 创建随机数组
torch.tensor(.) numpy.array(.) 从给定值创建数组
x.shape or x.size() x.shape 获取数组形状

定义张量数据类型

默认数据类型

默认张量数据类型为 torch.float32

复制代码
import torch
x = torch.ones(2, 2)
print(x)
print(x.dtype)

指定数据类型

复制代码
x = torch.ones(2, 2, dtype=torch.int8)
print(x)
print(x.dtype)

改变张量数据类型

先定义一个张量,打印其数据类型

复制代码
x=torch.ones(1)
print(x.dtype)

通过".type()"命令改变数据类型

复制代码
x=x.type(torch.torch.uint8)
print(x.dtype)

可以看到数据类型由torch.float32改变为了torch.uint8

张量与Numpy数组间的转换

将张量转换为 Numpy 数组

定义一个随机张量

复制代码
x=torch.rand(2,2)
print(x)
print(x.dtype)

通过".numpy()"命令转换为numpy数组

复制代码
y=x.numpy()
print(y)
print(y.dtype)

将 Numppy 数组转换为张量

定义一个numpy数组

复制代码
import numpy as np
x=np.zeros((2,2),dtype=np.float32)
print(x)
print(x.dtype)

用".from_numpy()"命令转换为张量

复制代码
y=torch.from_numpy(x)
print(y)
print(y.dtype)

在设备间移动张量

一般情况下,Pytorch 张量存储在 CPU 上,张量运行在 GPU上 以加快计算速率,这是张量的主要优势。为了有效利用这个优势,需要将张量移动到 CUDA 设备,可以使用 .to 方法将张量移动到相应设备上。

默认在CPU上定义张量

使用".tensor()"命令,张量一般默认定义在CPU上

复制代码
x=torch.tensor([1, 1.5])
print(x)
print(x.device)

定义CUDA设备

复制代码
if torch.cuda.is_available():
    device=torch.device("cuda:0")
torch.cuda.current_device()

将张量移动到CUDA设备

复制代码
x = x.to(device)
print(x)
print(x.device)

将张量移动到CPU

复制代码
device = torch.device("cpu")
x = x.to(device)
print(x)
print(x.device)

在任意设备上定义张量

复制代码
device = torch.device("cuda:0")
x = torch.ones(2,2, device=device)
print(x)
相关推荐
python机器学习建模12 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee12 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创12 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师
执笔论英雄12 小时前
【RL】python协程
java·网络·人工智能·python·设计模式
你好~每一天13 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法
老前端的功夫13 小时前
前端技术选型的理性之道:构建可量化的ROI评估模型
前端·javascript·人工智能·ubuntu·前端框架
koo36413 小时前
pytorch深度学习笔记
pytorch·笔记·深度学习
Mxsoft61913 小时前
我发现区块链数据同步延迟,某次故障溯源卡顿,动态调整共识机制救场!
人工智能
m0_4889130113 小时前
小白也能懂!RAG技术让AI告别知识滞后,收藏学习
人工智能·学习·langchain·大模型·ai大模型·rag·大模型学习
帮帮志13 小时前
【AI大模型对话】流式输出和非流式输出的定义和区别
开发语言·人工智能·python·大模型·anaconda