Pytorch张量

在conda的环境中安装Jupyter及其他软件包
Pytorch 建立在张量(tensor)之上,Pytorch张量是一个 n 维数组,类似于 NumPy 数组。专门针对GPU设计,可以运行在GPU上以加快计算效率。换句话说,Pytorch张量是可以运行在GPU上的多维数据。

目录

基础语法

定义张量数据类型

默认数据类型

指定数据类型

改变张量数据类型

张量与Numpy数组间的转换

[将张量转换为 Numpy 数组](#将张量转换为 Numpy 数组)

[将 Numppy 数组转换为张量](#将 Numppy 数组转换为张量)

在设备间移动张量

默认在CPU上定义张量

定义CUDA设备

将张量移动到CUDA设备

将张量移动到CPU

在任意设备上定义张量


基础语法

Pytorch张量 Numpy数组
torch.ones(.) numpy.ones(.) 创建一个一数组
torch.zeros(.) numpy.zeros(.) 创建一个零数组
torch.rand(.) numpy.random.rand(.) 创建随机数组
torch.tensor(.) numpy.array(.) 从给定值创建数组
x.shape or x.size() x.shape 获取数组形状

定义张量数据类型

默认数据类型

默认张量数据类型为 torch.float32

复制代码
import torch
x = torch.ones(2, 2)
print(x)
print(x.dtype)

指定数据类型

复制代码
x = torch.ones(2, 2, dtype=torch.int8)
print(x)
print(x.dtype)

改变张量数据类型

先定义一个张量,打印其数据类型

复制代码
x=torch.ones(1)
print(x.dtype)

通过".type()"命令改变数据类型

复制代码
x=x.type(torch.torch.uint8)
print(x.dtype)

可以看到数据类型由torch.float32改变为了torch.uint8

张量与Numpy数组间的转换

将张量转换为 Numpy 数组

定义一个随机张量

复制代码
x=torch.rand(2,2)
print(x)
print(x.dtype)

通过".numpy()"命令转换为numpy数组

复制代码
y=x.numpy()
print(y)
print(y.dtype)

将 Numppy 数组转换为张量

定义一个numpy数组

复制代码
import numpy as np
x=np.zeros((2,2),dtype=np.float32)
print(x)
print(x.dtype)

用".from_numpy()"命令转换为张量

复制代码
y=torch.from_numpy(x)
print(y)
print(y.dtype)

在设备间移动张量

一般情况下,Pytorch 张量存储在 CPU 上,张量运行在 GPU上 以加快计算速率,这是张量的主要优势。为了有效利用这个优势,需要将张量移动到 CUDA 设备,可以使用 .to 方法将张量移动到相应设备上。

默认在CPU上定义张量

使用".tensor()"命令,张量一般默认定义在CPU上

复制代码
x=torch.tensor([1, 1.5])
print(x)
print(x.device)

定义CUDA设备

复制代码
if torch.cuda.is_available():
    device=torch.device("cuda:0")
torch.cuda.current_device()

将张量移动到CUDA设备

复制代码
x = x.to(device)
print(x)
print(x.device)

将张量移动到CPU

复制代码
device = torch.device("cpu")
x = x.to(device)
print(x)
print(x.device)

在任意设备上定义张量

复制代码
device = torch.device("cuda:0")
x = torch.ones(2,2, device=device)
print(x)
相关推荐
我材不敲代码3 小时前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
0思必得05 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
水如烟5 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
韩立学长5 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学5 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779875 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
薛定谔的猫19825 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
u0109272715 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊5 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
壮Sir不壮6 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw