Pytorch张量

在conda的环境中安装Jupyter及其他软件包
Pytorch 建立在张量(tensor)之上,Pytorch张量是一个 n 维数组,类似于 NumPy 数组。专门针对GPU设计,可以运行在GPU上以加快计算效率。换句话说,Pytorch张量是可以运行在GPU上的多维数据。

目录

基础语法

定义张量数据类型

默认数据类型

指定数据类型

改变张量数据类型

张量与Numpy数组间的转换

[将张量转换为 Numpy 数组](#将张量转换为 Numpy 数组)

[将 Numppy 数组转换为张量](#将 Numppy 数组转换为张量)

在设备间移动张量

默认在CPU上定义张量

定义CUDA设备

将张量移动到CUDA设备

将张量移动到CPU

在任意设备上定义张量


基础语法

Pytorch张量 Numpy数组
torch.ones(.) numpy.ones(.) 创建一个一数组
torch.zeros(.) numpy.zeros(.) 创建一个零数组
torch.rand(.) numpy.random.rand(.) 创建随机数组
torch.tensor(.) numpy.array(.) 从给定值创建数组
x.shape or x.size() x.shape 获取数组形状

定义张量数据类型

默认数据类型

默认张量数据类型为 torch.float32

复制代码
import torch
x = torch.ones(2, 2)
print(x)
print(x.dtype)

指定数据类型

复制代码
x = torch.ones(2, 2, dtype=torch.int8)
print(x)
print(x.dtype)

改变张量数据类型

先定义一个张量,打印其数据类型

复制代码
x=torch.ones(1)
print(x.dtype)

通过".type()"命令改变数据类型

复制代码
x=x.type(torch.torch.uint8)
print(x.dtype)

可以看到数据类型由torch.float32改变为了torch.uint8

张量与Numpy数组间的转换

将张量转换为 Numpy 数组

定义一个随机张量

复制代码
x=torch.rand(2,2)
print(x)
print(x.dtype)

通过".numpy()"命令转换为numpy数组

复制代码
y=x.numpy()
print(y)
print(y.dtype)

将 Numppy 数组转换为张量

定义一个numpy数组

复制代码
import numpy as np
x=np.zeros((2,2),dtype=np.float32)
print(x)
print(x.dtype)

用".from_numpy()"命令转换为张量

复制代码
y=torch.from_numpy(x)
print(y)
print(y.dtype)

在设备间移动张量

一般情况下,Pytorch 张量存储在 CPU 上,张量运行在 GPU上 以加快计算速率,这是张量的主要优势。为了有效利用这个优势,需要将张量移动到 CUDA 设备,可以使用 .to 方法将张量移动到相应设备上。

默认在CPU上定义张量

使用".tensor()"命令,张量一般默认定义在CPU上

复制代码
x=torch.tensor([1, 1.5])
print(x)
print(x.device)

定义CUDA设备

复制代码
if torch.cuda.is_available():
    device=torch.device("cuda:0")
torch.cuda.current_device()

将张量移动到CUDA设备

复制代码
x = x.to(device)
print(x)
print(x.device)

将张量移动到CPU

复制代码
device = torch.device("cpu")
x = x.to(device)
print(x)
print(x.device)

在任意设备上定义张量

复制代码
device = torch.device("cuda:0")
x = torch.ones(2,2, device=device)
print(x)
相关推荐
阿里云大数据AI技术5 分钟前
AI搜索 MCP最佳实践
数据库·人工智能·搜索引擎
大千AI助手5 分钟前
蒙特卡洛方法:随机抽样的艺术与科学
人工智能·机器学习·贝叶斯·概率·蒙特卡洛·随机
山顶望月川8 分钟前
并行科技MaaS平台支持文心4.5系列开源模型调用
人工智能·机器学习·编辑器
程序员阿超的博客16 分钟前
Python 数据分析与机器学习入门 (五):Matplotlib 数据可视化基础
python·信息可视化·数据分析·matplotlib·数据可视化·python教程·pyplot
站大爷IP31 分钟前
Python 办公实战:用 python-docx 自动生成 Word 文档
python
安思派Anspire34 分钟前
再见 RAG?Gemini 2.0 Flash 刚刚 “杀死” 了它!
人工智能
FF-Studio36 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
master-dragon40 分钟前
spring-ai 工作流
人工智能·spring·ai
MO2T1 小时前
使用 Flask 构建基于 Dify 的企业资金投向与客户分类评估系统
后端·python·语言模型·flask
慢热型网友.1 小时前
用 Docker 构建你的第一个 Python Flask 程序
python·docker·flask