机器学习 - 模型性能评估

F1度量

F1度量是用于评估分类模型性能的一个综合指标,它同时考虑了查准率(Precision, P)和查全率(Recall, R)。F1度量的公式如下:

F 1 = 2 × P × R P + R F1 = \frac{2 \times P \times R}{P + R} F1=P+R2×P×R

其中,查准率和查全率的定义分别是:

  • 查准率(P): P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP
  • 查全率(R): R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP

其中,TP(True Positive)是真正例,FP(False Positive)是假正例,FN(False Negative)是假负例。

F1度量也可以写成:

F 1 = 2 × T P 样例总数 + T P − T N F1 = \frac{2 \times TP}{\text{样例总数} + TP - TN} F1=样例总数+TP−TN2×TP

在右上角,还给出了F1的倒数形式:

1 F 1 = 1 2 ( 1 P + 1 R ) \frac{1}{F1} = \frac{1}{2} \left( \frac{1}{P} + \frac{1}{R} \right) F11=21(P1+R1)

加权F度量(Fβ)

如果我们对查准率和查全率有不同的偏好,可以使用加权F度量(Fβ),其中β是一个权重参数。Fβ的公式为:

F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta} = \frac{(1 + \beta^2) \times P \times R}{(\beta^2 \times P) + R} Fβ=(β2×P)+R(1+β2)×P×R

其中,β的值决定了查准率和查全率的权重:

  • 当β > 1时,查全率的权重更大。
  • 当β < 1时,查准率的权重更大。

在图片中,还给出了Fβ的倒数形式:

1 F β = 1 1 + β 2 ( 1 P + β 2 R ) \frac{1}{F_{\beta}} = \frac{1}{1 + \beta^2} \left( \frac{1}{P} + \frac{\beta^2}{R} \right) Fβ1=1+β21(P1+Rβ2)

这个公式可以帮助我们理解在不同的β值下,查准率和查全率对Fβ的贡献。

总结:

  • F1度量 是查准率和查全率的调和平均。
  • 加权F度量(Fβ) 允许我们对查准率和查全率给予不同的权重。
相关推荐
可为测控8 分钟前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军13 分钟前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
Abdullah al-Sa32 分钟前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
神经星星36 分钟前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿39 分钟前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法
CodeJourney.1 小时前
EndNote与Word关联:科研写作的高效助力
数据库·人工智能·算法·架构
jingwang-cs1 小时前
内外网文件传输 安全、可控、便捷的跨网数据传输方案
人工智能·后端·安全
乐享数科1 小时前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融
幻想趾于现实1 小时前
视觉应用工程师(面试)
人工智能·数码相机·计算机视觉
简简单单做算法2 小时前
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·pso-bilstm·pso·双向长短期记忆网络·序列预测