机器学习 - 模型性能评估

F1度量

F1度量是用于评估分类模型性能的一个综合指标,它同时考虑了查准率(Precision, P)和查全率(Recall, R)。F1度量的公式如下:

F 1 = 2 × P × R P + R F1 = \frac{2 \times P \times R}{P + R} F1=P+R2×P×R

其中,查准率和查全率的定义分别是:

  • 查准率(P): P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP
  • 查全率(R): R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP

其中,TP(True Positive)是真正例,FP(False Positive)是假正例,FN(False Negative)是假负例。

F1度量也可以写成:

F 1 = 2 × T P 样例总数 + T P − T N F1 = \frac{2 \times TP}{\text{样例总数} + TP - TN} F1=样例总数+TP−TN2×TP

在右上角,还给出了F1的倒数形式:

1 F 1 = 1 2 ( 1 P + 1 R ) \frac{1}{F1} = \frac{1}{2} \left( \frac{1}{P} + \frac{1}{R} \right) F11=21(P1+R1)

加权F度量(Fβ)

如果我们对查准率和查全率有不同的偏好,可以使用加权F度量(Fβ),其中β是一个权重参数。Fβ的公式为:

F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta} = \frac{(1 + \beta^2) \times P \times R}{(\beta^2 \times P) + R} Fβ=(β2×P)+R(1+β2)×P×R

其中,β的值决定了查准率和查全率的权重:

  • 当β > 1时,查全率的权重更大。
  • 当β < 1时,查准率的权重更大。

在图片中,还给出了Fβ的倒数形式:

1 F β = 1 1 + β 2 ( 1 P + β 2 R ) \frac{1}{F_{\beta}} = \frac{1}{1 + \beta^2} \left( \frac{1}{P} + \frac{\beta^2}{R} \right) Fβ1=1+β21(P1+Rβ2)

这个公式可以帮助我们理解在不同的β值下,查准率和查全率对Fβ的贡献。

总结:

  • F1度量 是查准率和查全率的调和平均。
  • 加权F度量(Fβ) 允许我们对查准率和查全率给予不同的权重。
相关推荐
Blossom.11823 分钟前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint29 分钟前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc78732 分钟前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云32 分钟前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心
zhaoyi_he40 分钟前
多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
人工智能·重构
葫三生2 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336393 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk6 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程6 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝6 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python