机器学习 - 模型性能评估

F1度量

F1度量是用于评估分类模型性能的一个综合指标,它同时考虑了查准率(Precision, P)和查全率(Recall, R)。F1度量的公式如下:

F 1 = 2 × P × R P + R F1 = \frac{2 \times P \times R}{P + R} F1=P+R2×P×R

其中,查准率和查全率的定义分别是:

  • 查准率(P): P = T P T P + F P P = \frac{TP}{TP + FP} P=TP+FPTP
  • 查全率(R): R = T P T P + F N R = \frac{TP}{TP + FN} R=TP+FNTP

其中,TP(True Positive)是真正例,FP(False Positive)是假正例,FN(False Negative)是假负例。

F1度量也可以写成:

F 1 = 2 × T P 样例总数 + T P − T N F1 = \frac{2 \times TP}{\text{样例总数} + TP - TN} F1=样例总数+TP−TN2×TP

在右上角,还给出了F1的倒数形式:

1 F 1 = 1 2 ( 1 P + 1 R ) \frac{1}{F1} = \frac{1}{2} \left( \frac{1}{P} + \frac{1}{R} \right) F11=21(P1+R1)

加权F度量(Fβ)

如果我们对查准率和查全率有不同的偏好,可以使用加权F度量(Fβ),其中β是一个权重参数。Fβ的公式为:

F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta} = \frac{(1 + \beta^2) \times P \times R}{(\beta^2 \times P) + R} Fβ=(β2×P)+R(1+β2)×P×R

其中,β的值决定了查准率和查全率的权重:

  • 当β > 1时,查全率的权重更大。
  • 当β < 1时,查准率的权重更大。

在图片中,还给出了Fβ的倒数形式:

1 F β = 1 1 + β 2 ( 1 P + β 2 R ) \frac{1}{F_{\beta}} = \frac{1}{1 + \beta^2} \left( \frac{1}{P} + \frac{\beta^2}{R} \right) Fβ1=1+β21(P1+Rβ2)

这个公式可以帮助我们理解在不同的β值下,查准率和查全率对Fβ的贡献。

总结:

  • F1度量 是查准率和查全率的调和平均。
  • 加权F度量(Fβ) 允许我们对查准率和查全率给予不同的权重。
相关推荐
人工智能AI技术3 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡4 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣4 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56784 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6004 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1734 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416274 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented4 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie5 小时前
ADALog 日志异常检测
人工智能
Jouham5 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能