L1 Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

python 复制代码
import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenv

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
python 复制代码
client = OpenAI(
    api_key=OPENAI_API_KEY,
    base_url="https://api.chatanywhere.tech/v1"
)
python 复制代码
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello world"}]
)
python 复制代码
chat_completion.choices[0].message.content
复制代码
'Hello! How can I assist you today?'
python 复制代码
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

average_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breed

Example session:

Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSE

You will be called again with this:

Observation: A Bulldog weights 51 lbs

You then output:

Answer: A bulldog weights 51 lbs
""".strip()
python 复制代码
class Agent:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            temperature=0,
            messages=self.messages
        )
        return completion.choices[0].message.content
python 复制代码
def calculate(what):
    return eval(what)

def average_dog_weight(name):
    if name in "Scottish Terrier":
        return("Scottish Terriers average 20 lbs")
    elif name in "Border Collie":
        return("a Border Collies weight is 37 lbs")
    elif name in "Toy Poodle":
        return("a toy poodles average weight is 7 lbs")
    else:
        return("An average dog weights 50 lbs")

known_actions = {
    "calculate": calculate,
    "average_dog_weight": average_dog_weight
}
python 复制代码
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
复制代码
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
python 复制代码
result = average_dog_weight("Toy Poodle")
python 复制代码
result
复制代码
'a toy poodles average weight is 7 lbs'
python 复制代码
next_prompt = "Observation: {}".format(result)
python 复制代码
abot(next_prompt)
复制代码
'Answer: A Toy Poodle weighs 7 lbs'
python 复制代码
abot.messages
复制代码
[{'role': 'system',
  'content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},
 {'role': 'user', 'content': 'How much does a toy poodle weigh?'},
 {'role': 'assistant',
  'content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},
 {'role': 'user',
  'content': 'Observation: a toy poodles average weight is 7 lbs'},
 {'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

python 复制代码
abot = Agent(prompt)
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
复制代码
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
python 复制代码
print(abot.messages[-1]['content'])
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
复制代码
Observation: a Border Collies weight is 37 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
复制代码
Observation: Scottish Terriers average 20 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: calculate: 37 + 20\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
复制代码
Observation: 57
python 复制代码
abot(next_prompt)
复制代码
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

python 复制代码
action_re = re.compile(r'^Action: (\w+): (.*)$')
python 复制代码
def query(question, max_turns=5):
    i = 0
    bot = Agent(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [
            action_re.match(a) 
            for a in result.split('\n') 
            if action_re.match(a)
        ] 
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
 -- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE
 -- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE
 -- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
相关推荐
love530love4 分钟前
【ComfyUI/SD环境管理指南(二)】:如何避免插件安装导致的环境崩溃与“外科手术式”修复
人工智能·windows·python·stable diffusion·github·aigc·comfyui
Yeats_Liao6 分钟前
CANN Samples(九):内存管理与性能优化
人工智能·深度学习·性能优化
Dev7z8 分钟前
基于深度学习的中文手写数字识别系统研究与实现
人工智能·深度学习
编程修仙8 分钟前
第五章 Spring XML配置原理
xml·python·spring
wshzd13 分钟前
LLM之Agent(三十六)|AI Agents(五):Workflow vs Agent
人工智能
创客匠人老蒋15 分钟前
AI正在重塑IP:创客匠人峰会探讨智能体与未来趋势
人工智能·创始人ip·创客匠人全球ip+ai高峰论坛
江上鹤.14819 分钟前
Day25评价问题
python
万行23 分钟前
英语作文模板
python
极智视界24 分钟前
目标检测数据集 - 卫星图像船舶检测数据集下载
人工智能·目标检测·目标跟踪
韩立学长24 分钟前
【开题答辩实录分享】以《计算机类专业招聘信息爬取与查询系统设计与实现》为例进行答辩实录分享
python·scrapy·django