L1 Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

python 复制代码
import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenv

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
python 复制代码
client = OpenAI(
    api_key=OPENAI_API_KEY,
    base_url="https://api.chatanywhere.tech/v1"
)
python 复制代码
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello world"}]
)
python 复制代码
chat_completion.choices[0].message.content
复制代码
'Hello! How can I assist you today?'
python 复制代码
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

average_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breed

Example session:

Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSE

You will be called again with this:

Observation: A Bulldog weights 51 lbs

You then output:

Answer: A bulldog weights 51 lbs
""".strip()
python 复制代码
class Agent:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            temperature=0,
            messages=self.messages
        )
        return completion.choices[0].message.content
python 复制代码
def calculate(what):
    return eval(what)

def average_dog_weight(name):
    if name in "Scottish Terrier":
        return("Scottish Terriers average 20 lbs")
    elif name in "Border Collie":
        return("a Border Collies weight is 37 lbs")
    elif name in "Toy Poodle":
        return("a toy poodles average weight is 7 lbs")
    else:
        return("An average dog weights 50 lbs")

known_actions = {
    "calculate": calculate,
    "average_dog_weight": average_dog_weight
}
python 复制代码
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
复制代码
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
python 复制代码
result = average_dog_weight("Toy Poodle")
python 复制代码
result
复制代码
'a toy poodles average weight is 7 lbs'
python 复制代码
next_prompt = "Observation: {}".format(result)
python 复制代码
abot(next_prompt)
复制代码
'Answer: A Toy Poodle weighs 7 lbs'
python 复制代码
abot.messages
复制代码
[{'role': 'system',
  'content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},
 {'role': 'user', 'content': 'How much does a toy poodle weigh?'},
 {'role': 'assistant',
  'content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},
 {'role': 'user',
  'content': 'Observation: a toy poodles average weight is 7 lbs'},
 {'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

python 复制代码
abot = Agent(prompt)
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
复制代码
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
python 复制代码
print(abot.messages[-1]['content'])
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
复制代码
Observation: a Border Collies weight is 37 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
复制代码
Observation: Scottish Terriers average 20 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: calculate: 37 + 20\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
复制代码
Observation: 57
python 复制代码
abot(next_prompt)
复制代码
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

python 复制代码
action_re = re.compile(r'^Action: (\w+): (.*)$')
python 复制代码
def query(question, max_turns=5):
    i = 0
    bot = Agent(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [
            action_re.match(a) 
            for a in result.split('\n') 
            if action_re.match(a)
        ] 
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
 -- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE
 -- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE
 -- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
相关推荐
_codemonster15 小时前
AI大模型入门到实战系列(六)文本分类
人工智能·分类·数据挖掘
唯道行15 小时前
计算机图形学·25 消隐2 区域子分算法-光线投射算法
人工智能·算法·计算机视觉·计算机图形学·opengl
测试人社区—小叶子15 小时前
接口测试全攻略:从Swagger到MockServer
运维·c++·人工智能·测试工具·机器人·自动化·测试用例
Jack___Xue15 小时前
LangChain实战快速入门笔记(三)--LangChain使用之Chains
人工智能·笔记·langchain
jinxinyuuuus15 小时前
FIRE之旅 财务计算器:实时交互式建模与前端性能工程
前端·人工智能·算法·自动化
liwulin050615 小时前
【PYTHON】python venv创建虚拟环境,非conda
开发语言·python·conda
IT·小灰灰15 小时前
当AI开口说话:可灵视频2.6如何终结“默片时代“重塑视听共生
大数据·人工智能·python·深度学习·数据挖掘·开源·音视频
nju_spy15 小时前
复杂结构数据挖掘(八)社交网络挖掘:标签传播、社区发现、影响力传播
人工智能·数据挖掘·谱聚类·社交网络挖掘·图标签转播·迭代改进·社交影响力分析
多则惑少则明15 小时前
AI测试、大模型测试(八)SpringAI核心技术
人工智能·ai测试·ai大模型测试
youcans_15 小时前
【跟我学YOLO】Mamba-YOLO-World:YOLO-World与Mamba 融合的开放词汇目标检测
论文阅读·人工智能·yolo·计算机视觉·mamba