L1 Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

python 复制代码
import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenv

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
python 复制代码
client = OpenAI(
    api_key=OPENAI_API_KEY,
    base_url="https://api.chatanywhere.tech/v1"
)
python 复制代码
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello world"}]
)
python 复制代码
chat_completion.choices[0].message.content
复制代码
'Hello! How can I assist you today?'
python 复制代码
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

average_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breed

Example session:

Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSE

You will be called again with this:

Observation: A Bulldog weights 51 lbs

You then output:

Answer: A bulldog weights 51 lbs
""".strip()
python 复制代码
class Agent:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            temperature=0,
            messages=self.messages
        )
        return completion.choices[0].message.content
python 复制代码
def calculate(what):
    return eval(what)

def average_dog_weight(name):
    if name in "Scottish Terrier":
        return("Scottish Terriers average 20 lbs")
    elif name in "Border Collie":
        return("a Border Collies weight is 37 lbs")
    elif name in "Toy Poodle":
        return("a toy poodles average weight is 7 lbs")
    else:
        return("An average dog weights 50 lbs")

known_actions = {
    "calculate": calculate,
    "average_dog_weight": average_dog_weight
}
python 复制代码
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
复制代码
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
python 复制代码
result = average_dog_weight("Toy Poodle")
python 复制代码
result
复制代码
'a toy poodles average weight is 7 lbs'
python 复制代码
next_prompt = "Observation: {}".format(result)
python 复制代码
abot(next_prompt)
复制代码
'Answer: A Toy Poodle weighs 7 lbs'
python 复制代码
abot.messages
复制代码
[{'role': 'system',
  'content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},
 {'role': 'user', 'content': 'How much does a toy poodle weigh?'},
 {'role': 'assistant',
  'content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},
 {'role': 'user',
  'content': 'Observation: a toy poodles average weight is 7 lbs'},
 {'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

python 复制代码
abot = Agent(prompt)
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
复制代码
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
python 复制代码
print(abot.messages[-1]['content'])
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
复制代码
Observation: a Border Collies weight is 37 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
复制代码
Observation: Scottish Terriers average 20 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: calculate: 37 + 20\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
复制代码
Observation: 57
python 复制代码
abot(next_prompt)
复制代码
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

python 复制代码
action_re = re.compile(r'^Action: (\w+): (.*)$')
python 复制代码
def query(question, max_turns=5):
    i = 0
    bot = Agent(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [
            action_re.match(a) 
            for a in result.split('\n') 
            if action_re.match(a)
        ] 
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
 -- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE
 -- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE
 -- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
相关推荐
大千AI助手4 分钟前
残差:从统计学到深度学习的核心概念
人工智能·深度学习·resnet·统计学·方差分析·残差·残差分析
yzx99101312 分钟前
豆包、Kimi、通义千问、DeepSeek、Gamma、墨刀 AI”六款主流大模型(或 AI 平台)生成 PPT 的完整流程
人工智能·powerpoint·墨刀
真*小白18 分钟前
Python语法学习篇(三)【py3】
开发语言·python·学习
max50060027 分钟前
使用OmniAvatar-14B模型实现照片和文字生成视频的完整指南
图像处理·人工智能·深度学习·算法·音视频
不一样的故事12633 分钟前
学习Python是一个循序渐进的过程,结合系统学习、持续实践和项目驱动,
开发语言·python·学习
可触的未来,发芽的智生34 分钟前
追根索源-神经网络的灾难性遗忘原因
人工智能·神经网络·算法·机器学习·架构
CAE32035 分钟前
基于Ncode的新能源汽车电池包随机振动疲劳分析
人工智能·汽车·电池包·hypermesh·振动疲劳·optistruct
zzywxc78735 分钟前
自动化测试框架是软件测试的核心基础设施,通过预设规则和脚本自动执行测试用例,显著提高测试效率和覆盖率。
运维·人工智能·自动化·prompt·测试用例·流程图
尺度商业41 分钟前
2025服贸会“海淀之夜”,点亮“科技”与“服务”底色
大数据·人工智能·科技
AWS官方合作商41 分钟前
涂鸦智能携手亚马逊云科技,以全球基础设施与生成式AI加速万物智联时代到来
人工智能·科技·aws·亚马逊云科技