L1 Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

python 复制代码
import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenv

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
python 复制代码
client = OpenAI(
    api_key=OPENAI_API_KEY,
    base_url="https://api.chatanywhere.tech/v1"
)
python 复制代码
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello world"}]
)
python 复制代码
chat_completion.choices[0].message.content
复制代码
'Hello! How can I assist you today?'
python 复制代码
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

average_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breed

Example session:

Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSE

You will be called again with this:

Observation: A Bulldog weights 51 lbs

You then output:

Answer: A bulldog weights 51 lbs
""".strip()
python 复制代码
class Agent:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            temperature=0,
            messages=self.messages
        )
        return completion.choices[0].message.content
python 复制代码
def calculate(what):
    return eval(what)

def average_dog_weight(name):
    if name in "Scottish Terrier":
        return("Scottish Terriers average 20 lbs")
    elif name in "Border Collie":
        return("a Border Collies weight is 37 lbs")
    elif name in "Toy Poodle":
        return("a toy poodles average weight is 7 lbs")
    else:
        return("An average dog weights 50 lbs")

known_actions = {
    "calculate": calculate,
    "average_dog_weight": average_dog_weight
}
python 复制代码
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
复制代码
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
python 复制代码
result = average_dog_weight("Toy Poodle")
python 复制代码
result
复制代码
'a toy poodles average weight is 7 lbs'
python 复制代码
next_prompt = "Observation: {}".format(result)
python 复制代码
abot(next_prompt)
复制代码
'Answer: A Toy Poodle weighs 7 lbs'
python 复制代码
abot.messages
复制代码
[{'role': 'system',
  'content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},
 {'role': 'user', 'content': 'How much does a toy poodle weigh?'},
 {'role': 'assistant',
  'content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},
 {'role': 'user',
  'content': 'Observation: a toy poodles average weight is 7 lbs'},
 {'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

python 复制代码
abot = Agent(prompt)
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
复制代码
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
python 复制代码
print(abot.messages[-1]['content'])
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
复制代码
Observation: a Border Collies weight is 37 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
复制代码
Observation: Scottish Terriers average 20 lbs
python 复制代码
abot(next_prompt)
复制代码
'Action: calculate: 37 + 20\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
复制代码
Observation: 57
python 复制代码
abot(next_prompt)
复制代码
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

python 复制代码
action_re = re.compile(r'^Action: (\w+): (.*)$')
python 复制代码
def query(question, max_turns=5):
    i = 0
    bot = Agent(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [
            action_re.match(a) 
            for a in result.split('\n') 
            if action_re.match(a)
        ] 
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
复制代码
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
 -- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE
 -- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE
 -- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
相关推荐
中冕—霍格沃兹软件开发测试2 分钟前
探索性测试:思维驱动下的高效缺陷狩猎
人工智能·科技·开源·appium·bug
cnfalcon2 分钟前
ESP-IDF AI硬件开发技术问题记录
人工智能·esp-idf
陈佬昔没带相机3 分钟前
从罗永浩 x MiniMax 闫俊杰对谈中,一窥 AI 时代软件公司岗位变化
人工智能·程序员·敏捷开发
老马啸西风5 分钟前
成熟企业级技术平台-09-加密机 / 密钥管理服务 KMSS(Key Management & Security Service)
人工智能·深度学习·算法·职场和发展
2301_801821716 分钟前
前期工作总结
人工智能
羸弱的穷酸书生8 分钟前
国网 i1协议 python实现
开发语言·python
weixin_462022358 分钟前
RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images
python·计算机视觉
电子硬件笔记9 分钟前
Python语言编程导论第三章 编写程序
开发语言·python·编辑器
布谷歌10 分钟前
在java中实现c#的int.TryParse方法
java·开发语言·python·c#
Ulana25 分钟前
计算机基础10大高频考题解析
java·人工智能·算法