L1 Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

python 复制代码
import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenv

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
python 复制代码
client = OpenAI(
    api_key=OPENAI_API_KEY,
    base_url="https://api.chatanywhere.tech/v1"
)
python 复制代码
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello world"}]
)
python 复制代码
chat_completion.choices[0].message.content
'Hello! How can I assist you today?'
python 复制代码
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.

Your available actions are:

calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary

average_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breed

Example session:

Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSE

You will be called again with this:

Observation: A Bulldog weights 51 lbs

You then output:

Answer: A bulldog weights 51 lbs
""".strip()
python 复制代码
class Agent:
    def __init__(self, system=""):
        self.system = system
        self.messages = []
        if self.system:
            self.messages.append({"role": "system", "content": system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            temperature=0,
            messages=self.messages
        )
        return completion.choices[0].message.content
python 复制代码
def calculate(what):
    return eval(what)

def average_dog_weight(name):
    if name in "Scottish Terrier":
        return("Scottish Terriers average 20 lbs")
    elif name in "Border Collie":
        return("a Border Collies weight is 37 lbs")
    elif name in "Toy Poodle":
        return("a toy poodles average weight is 7 lbs")
    else:
        return("An average dog weights 50 lbs")

known_actions = {
    "calculate": calculate,
    "average_dog_weight": average_dog_weight
}
python 复制代码
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
python 复制代码
result = average_dog_weight("Toy Poodle")
python 复制代码
result
'a toy poodles average weight is 7 lbs'
python 复制代码
next_prompt = "Observation: {}".format(result)
python 复制代码
abot(next_prompt)
'Answer: A Toy Poodle weighs 7 lbs'
python 复制代码
abot.messages
[{'role': 'system',
  'content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},
 {'role': 'user', 'content': 'How much does a toy poodle weigh?'},
 {'role': 'assistant',
  'content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},
 {'role': 'user',
  'content': 'Observation: a toy poodles average weight is 7 lbs'},
 {'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

python 复制代码
abot = Agent(prompt)
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
python 复制代码
print(abot.messages[-1]['content'])
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
Observation: a Border Collies weight is 37 lbs
python 复制代码
abot(next_prompt)
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
Observation: Scottish Terriers average 20 lbs
python 复制代码
abot(next_prompt)
'Action: calculate: 37 + 20\nPAUSE'
python 复制代码
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
Observation: 57
python 复制代码
abot(next_prompt)
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

python 复制代码
action_re = re.compile(r'^Action: (\w+): (.*)$')
python 复制代码
def query(question, max_turns=5):
    i = 0
    bot = Agent(prompt)
    next_prompt = question
    while i < max_turns:
        i += 1
        result = bot(next_prompt)
        print(result)
        actions = [
            action_re.match(a) 
            for a in result.split('\n') 
            if action_re.match(a)
        ] 
        if actions:
            # There is an action to run
            action, action_input = actions[0].groups()
            if action not in known_actions:
                raise Exception("Unknown action: {}: {}".format(action, action_input))
            print(" -- running {} {}".format(action, action_input))
            observation = known_actions[action](action_input)
            print("Observation:", observation)
            next_prompt = "Observation: {}".format(observation)
        else:
            return
python 复制代码
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.

Action: average_dog_weight: Border Collie
PAUSE
 -- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE
 -- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE
 -- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
相关推荐
沉下心来学鲁班1 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k1 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr10 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202422 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食26 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
萧鼎32 分钟前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步
学地理的小胖砸33 分钟前
【一些关于Python的信息和帮助】
开发语言·python
疯一样的码农33 分钟前
Python 继承、多态、封装、抽象
开发语言·python
Python大数据分析@1 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python