跟着李沐学AI:简单损失函数

均方损失L2Loss

特点:当真实值y与预测值y'相差较远时,梯度较大,参数更新较多。当预测值与真实值靠近时,梯度越来越小。

最小绝对值损失L1Loss

特点:当预测值与真实值相差较远时,梯度永远为常数,能带来稳定性的好处,但是0点处不可导,具有不平滑性。

Huber's Robust Loss

当预测值与真实值相差较大时,是绝对值误差。当预测值与真实值相差较小时是平方误差。

相关推荐
buttonupAI5 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876486 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
曹文杰15190301126 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄6 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把6 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL6 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很6 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里7 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631297 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛117 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai