跟着李沐学AI:简单损失函数

均方损失L2Loss

特点:当真实值y与预测值y'相差较远时,梯度较大,参数更新较多。当预测值与真实值靠近时,梯度越来越小。

最小绝对值损失L1Loss

特点:当预测值与真实值相差较远时,梯度永远为常数,能带来稳定性的好处,但是0点处不可导,具有不平滑性。

Huber's Robust Loss

当预测值与真实值相差较大时,是绝对值误差。当预测值与真实值相差较小时是平方误差。

相关推荐
修复bug14 分钟前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼17 分钟前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
机器鱼33 分钟前
1.2 基于卷积神经网络与SE注意力的轴承故障诊断
深度学习·机器学习·cnn
励志成为大佬的小杨35 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙44 分钟前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能1 小时前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人1 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
zm-v-159304339862 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt