跟着李沐学AI:简单损失函数

均方损失L2Loss

特点:当真实值y与预测值y'相差较远时,梯度较大,参数更新较多。当预测值与真实值靠近时,梯度越来越小。

最小绝对值损失L1Loss

特点:当预测值与真实值相差较远时,梯度永远为常数,能带来稳定性的好处,但是0点处不可导,具有不平滑性。

Huber's Robust Loss

当预测值与真实值相差较大时,是绝对值误差。当预测值与真实值相差较小时是平方误差。

相关推荐
NAGNIP1 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP1 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴2 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维2 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者2 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai2 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃2 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb2 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU3 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习
Blossom.1183 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算