跟着李沐学AI:简单损失函数

均方损失L2Loss

特点:当真实值y与预测值y'相差较远时,梯度较大,参数更新较多。当预测值与真实值靠近时,梯度越来越小。

最小绝对值损失L1Loss

特点:当预测值与真实值相差较远时,梯度永远为常数,能带来稳定性的好处,但是0点处不可导,具有不平滑性。

Huber's Robust Loss

当预测值与真实值相差较大时,是绝对值误差。当预测值与真实值相差较小时是平方误差。

相关推荐
CSDN云计算4 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森14 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112316 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子21 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing33 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
忘梓.1 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类