跟着李沐学AI:简单损失函数

均方损失L2Loss

特点:当真实值y与预测值y'相差较远时,梯度较大,参数更新较多。当预测值与真实值靠近时,梯度越来越小。

最小绝对值损失L1Loss

特点:当预测值与真实值相差较远时,梯度永远为常数,能带来稳定性的好处,但是0点处不可导,具有不平滑性。

Huber's Robust Loss

当预测值与真实值相差较大时,是绝对值误差。当预测值与真实值相差较小时是平方误差。

相关推荐
Light605 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升5 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide5 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农5 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews5 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体6 小时前
机器人的罪与罚
人工智能·机器人
三不原则6 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM6 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员6 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay6 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全