卷积神经网络——LeNet——FashionMNIST

目录

一、文件结构

二、model.py

复制代码
import torch
from torch import nn
from torchsummary import summary

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet,self).__init__()
        self.c1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5,padding=2)
        self.sig = nn.Sigmoid()
        self.s2 = nn.AvgPool2d(kernel_size=2,stride=2)
        self.c3 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)
        self.s4 = nn.AvgPool2d(kernel_size=2,stride=2)

        self.flatten = nn.Flatten()
        self.f5 = nn.Linear(in_features=5*5*16,out_features=120)
        self.f6 = nn.Linear(in_features=120,out_features=84)
        self.f7 = nn.Linear(in_features=84,out_features=10)

    def forward(self,x):
        x = self.sig(self.c1(x))
        x = self.s2(x)
        x = self.sig(self.c3(x))
        x = self.s4(x)
        x = self.flatten(x)
        x = self.f5(x)
        x = self.f6(x)
        x = self.f7(x)
        return x

# if __name__ =="__main__":
#     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#
#     model = LeNet().to(device)
#
#     print(summary(model,input_size=(1,28,28)))

三、model_train.py

复制代码
# 导入所需的Python库
from torchvision.datasets import FashionMNIST
from torchvision import transforms
import torch.utils.data as Data
import torch
from torch import nn
import time
import copy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from model import LeNet  # model.py中定义了LeNet模型
from tqdm import tqdm  # 导入tqdm库,用于显示进度条

# 定义数据加载和处理函数
def train_val_data_process():
    # 加载FashionMNIST数据集,Resize到28x28尺寸,并转换为Tensor
    train_data = FashionMNIST(root="./data",
                              train=True,
                              transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),
                              download=True)

    # 将加载的数据集分为80%的训练数据和20%的验证数据
    train_data, val_data = Data.random_split(train_data, lengths=[round(0.8 * len(train_data)), round(0.2 * len(train_data))])

    # 为训练数据和验证数据创建DataLoader,设置批量大小为32,洗牌,2个进程加载数据
    train_dataloader = Data.DataLoader(dataset=train_data,
                                       batch_size=32,
                                       shuffle=True,
                                       num_workers=2)

    val_dataloader = Data.DataLoader(dataset=val_data,
                                     batch_size=32,
                                     shuffle=True,
                                     num_workers=2)

    # 返回训练和验证的DataLoader
    return train_dataloader, val_dataloader

# 定义模型训练和验证过程的函数
def train_model_process(model, train_dataloader, val_dataloader, num_epochs):
    # 设置使用CUDA如果可用
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # 打印使用的设备
    dev = "cuda" if torch.cuda.is_available() else "cpu"
    print(f'当前模型训练设备为: {dev}')

    # 初始化Adam优化器和交叉熵损失函数
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()

    # 将模型移动到选定的设备上
    model = model.to(device)

    # 复制模型权重用于后续更新最佳模型
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0  # 初始化最佳准确度

    # 初始化用于记录训练和验证过程中损失和准确度的列表
    train_loss_all = []
    val_loss_all = []
    train_acc_all = []
    val_acc_all = []

    # 记录训练开始时间
    start_time = time.time()

    # 迭代指定的训练轮数
    for epoch in range(1, num_epochs + 1):
        # 记录每个epoch开始的时间
        since = time.time()

        # 打印分隔符和当前epoch信息
        print("-" * 10)
        print(f"Epoch: {epoch}/{num_epochs}")

        # 初始化训练和验证过程中的损失和正确预测数量
        train_loss = 0.0
        train_corrects = 0
        val_loss = 0.0
        val_corrects = 0

        # 初始化批次计数器
        train_num = 0
        val_num = 0

        # 创建训练进度条
        progress_train_bar = tqdm(total=len(train_dataloader), desc=f'Training {epoch}', unit='batch')

        # 训练数据集的遍历
        for step, (b_x, b_y) in enumerate(train_dataloader):
            # 将数据移动到相应的设备上
            b_x = b_x.to(device)
            b_y = b_y.to(device)

            # 训练模型
            model.train()

            # 前向传播
            output = model(b_x)

            # 计算预测标签
            pre_label = torch.argmax(output, dim=1)

            # 计算损失
            loss = criterion(output, b_y)

            # 清空梯度
            optimizer.zero_grad()

            # 反向传播
            loss.backward()

            # 更新权重
            optimizer.step()

            # 累加损失和正确预测数量
            train_loss += loss.item() * b_x.size(0)
            train_corrects += torch.sum(pre_label == b_y.data)

            # 更新批次计数器
            train_num += b_x.size(0)

            # 更新训练进度条
            progress_train_bar.update(1)

        # 关闭训练进度条
        progress_train_bar.close()

        # 创建验证进度条
        progress_val_bar = tqdm(total=len(val_dataloader), desc=f'Validation {epoch}', unit='batch')

        # 验证数据集的遍历
        for step, (b_x, b_y) in enumerate(val_dataloader):
            # 将数据移动到相应的设备上
            b_x = b_x.to(device)
            b_y = b_y.to(device)

            # 评估模型
            model.eval()

            # 前向传播
            output = model(b_x)

            # 计算预测标签
            pre_label = torch.argmax(output, dim=1)

            # 计算损失
            loss = criterion(output, b_y)

            # 累加损失和正确预测数量
            val_loss += loss.item() * b_x.size(0)
            val_corrects += torch.sum(pre_label == b_y.data)

            # 更新批次计数器
            val_num += b_x.size(0)

            # 更新验证进度条
            progress_val_bar.update(1)

        # 关闭验证进度条
        progress_val_bar.close()

        # 计算并记录epoch的平均损失和准确度
        train_loss_all.append(train_loss / train_num)
        train_acc_all.append(train_corrects.double().item() / train_num)

        val_loss_all.append(val_loss / val_num)
        val_acc_all.append(val_corrects.double().item() / val_num)

        # 打印训练和验证的损失与准确度
        print(f'{epoch} Train Loss: {train_loss_all[-1]:.4f} Train Acc: {train_acc_all[-1]:.4f}')
        print(f'{epoch} Val Loss: {val_loss_all[-1]:.4f} Val Acc: {val_acc_all[-1]:.4f}')

        # 计算并打印epoch训练耗费的时间
        time_use = time.time() - since
        print(f'第 {epoch} 个 epoch 训练耗费时间: {time_use // 60:.0f}m {time_use % 60:.0f}s')

        # 若当前epoch的验证准确度为最佳,则更新最佳模型权重
        if val_acc_all[-1] > best_acc:
            best_acc = val_acc_all[-1]
            best_model_wts = copy.deepcopy(model.state_dict())

    # 训练结束,保存最佳模型权重
    torch.save(best_model_wts, 'D:/Pycharm/deepl/LeNet/weight/best_model.pth')

    # 如果当前epoch为总epoch数,则保存最终模型权重
    if epoch == num_epochs:
        torch.save(model.state_dict(), f'D:/Pycharm/deepl/LeNet/weight/{num_epochs}_model.pth')

    # 将训练过程中的统计数据整理成DataFrame
    train_process = pd.DataFrame(data={
        "epoch": range(1, num_epochs + 1),
        "train_loss_all": train_loss_all,
        "val_loss_all": val_loss_all,
        "train_acc_all": train_acc_all,
        "val_acc_all": val_acc_all
    })

    # 打印总训练时间
    consume_time = time.time() - start_time
    print(f'总耗时:{consume_time // 60:.0f}m {consume_time % 60:.0f}s')

    # 返回包含训练过程统计数据的DataFrame
    return train_process

# 定义绘制训练和验证过程中损失与准确度的函数
def matplot_acc_loss(train_process):
    # 创建图形和子图
    plt.figure(figsize=(12, 4))

    # 绘制训练和验证损失
    plt.subplot(1, 2, 1)
    plt.plot(train_process["epoch"], train_process["train_loss_all"], 'ro-', label="train_loss")
    plt.plot(train_process["epoch"], train_process["val_loss_all"], 'bs-', label="val_loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("loss")
    # 保存损失图像
    plt.savefig('./result_picture/training_loss_accuracy.png', bbox_inches='tight')

    # 绘制训练和验证准确度
    plt.subplot(1, 2, 2)
    plt.plot(train_process["epoch"], train_process["train_acc_all"], 'ro-', label="train_acc")
    plt.plot(train_process["epoch"], train_process["val_acc_all"], 'bs-', label="val_acc")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("accuracy")
    # 保存准确率曲线图
    plt.savefig('./result_picture/training_accuracy.png', bbox_inches='tight')
    plt.show()

if __name__ == "__main__":
    model = LeNet()

    train_dataloader, val_dataloader = train_val_data_process()
    train_process = train_model_process(model, train_dataloader, val_dataloader, num_epochs=20)

    matplot_acc_loss(train_process)

四、model_test.py

复制代码
import torch
import torch.utils.data as Data
from torchvision import transforms
from torchvision.datasets import FashionMNIST
from model import LeNet
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# t代表test


def t_data_process():
    test_data = FashionMNIST(root="./data",
                             train=False,
                              transform=transforms.Compose([transforms.Resize(size=28), transforms.ToTensor()]),
                              download=True)

    test_dataloader = Data.DataLoader(dataset=test_data,
                                       batch_size=1,
                                       shuffle=True,
                                       num_workers=0)

    return test_dataloader


def t_model_process(model, test_dataloader):
    if model is not None:
        print('Successfully loaded the model.')

    device = "cuda" if torch.cuda.is_available() else "cpu"

    model = model.to(device)

    # 初始化参数
    test_corrects = 0.0
    test_num = 0
    all_preds = []  # 存储所有预测标签
    all_labels = []  # 存储所有实际标签

    # 只进行前向传播,不计算梯度
    with torch.no_grad():
        for test_x, test_y in test_dataloader:
            test_x = test_x.to(device)
            test_y = test_y.to(device)

            # 设置模型为验证模式
            model.eval()
            # 前向传播得到一个batch的结果
            output = model(test_x)
            # 查找最大值对应的行标
            pre_lab = torch.argmax(output, dim=1)

            # 收集预测和实际标签
            all_preds.extend(pre_lab.tolist())
            all_labels.extend(test_y.tolist())

            # 计算准确率
            test_corrects += torch.sum(pre_lab == test_y.data)

            # 将所有的测试样本进行累加
            test_num += test_x.size(0)

    # 计算准确率
    test_acc = test_corrects.double().item() / test_num
    print(f'测试的准确率:{test_acc}')

    # 绘制混淆矩阵
    conf_matrix = confusion_matrix(all_labels, all_preds)
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
    plt.xlabel('Predicted labels')
    plt.ylabel('True labels')
    plt.title('Confusion Matrix')
    plt.show()
    plt.savefig('./result_picture/Confusion_Matrix.png', bbox_inches='tight')



if __name__=="__main__":
    # 加载模型
    model = LeNet()

    print('loading model')
    # 加载权重
    model.load_state_dict(torch.load('D:/Pycharm/deepl/LeNet/weight/best_model.pth'))

    # 加载测试数据
    test_dataloader = t_data_process()

    # 加载模型测试的函数
    t_model_process(model,test_dataloader)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    model = model.to(device)

    classes = ['T-shirt/top','Trouser','Pullover','Dress','coat','Sandal','Shirt','Sneaker','Bag','Ankle boot']
    with torch.no_grad():
        for b_x,b_y in test_dataloader:
            b_x = b_x.to(device)
            b_y = b_y.to(device)

            model.eval()

            output = model(b_x)
            pre_lab = torch.argmax(output,dim=1)
            result = pre_lab.item()
            label = b_y.item()

            print(f'预测值:{classes[result]}',"-----------",f'真实值:{classes[label]}')
相关推荐
Hcoco_me22 分钟前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML44 分钟前
第九章:EM 算法
人工智能·算法·机器学习
q_35488851531 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao1 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
陆研一1 小时前
2026国内无痛使用Gemini 3与GPT-5.2
人工智能·ai·chatgpt
Honmaple1 小时前
加载 .env 文件
人工智能
愚公搬代码2 小时前
【愚公系列】《AI+直播营销》038-直播间装修和布置(直播间的设备选择)
人工智能
就爱吃香菜12 小时前
跨越网络的连接艺术:实战基于 SSE 传输层的远程 MCP 服务部署,实现云端 AI 与本地资产联动
网络·人工智能
lusananan2 小时前
Transformer为何一统天下?深度解析RNN、CNN的局限与注意力机制的崛起
人工智能·游戏
xiaogutou11212 小时前
亲子共读绘本故事 PPTai 生成,温馨模板一键生成
人工智能