文章目录
本篇完成的模块是TCP服务器的设计和token验证
TCP服务器设计
客户端TCP管理者
因为聊天服务要维持一个长链接,方便服务器和客户端双向通信,那么就需要一个TCPMgr来管理TCP连接
而实际开发中网络模块一般以单例模式使用,那我们就基于单例基类和可被分享类创建一个自定义的TcpMgr类,在QT工程中新建TcpMgr类,会生成头文件和源文件,头文件修改如下
cpp
#ifndef TCPMGR_H
#define TCPMGR_H
#include <QTcpSocket>
#include "singleton.h"
#include "global.h"
class TcpMgr:public QObject, public Singleton<TcpMgr>,
public std::enable_shared_from_this<TcpMgr>
{
Q_OBJECT
public:
TcpMgr();
private:
QTcpSocket _socket;
QString _host;
uint16_t _port;
QByteArray _buffer;
bool _b_recv_pending;
quint16 _message_id;
quint16 _message_len;
public slots:
void slot_tcp_connect(ServerInfo);
void slot_send_data(ReqId reqId, QString data);
signals:
void sig_con_success(bool bsuccess);
void sig_send_data(ReqId reqId, QString data);
};
#endif // TCPMGR_H
接下来我们在构造函数中连接网络请求的各种信号
cpp
TcpMgr::TcpMgr():_host(""),_port(0),_b_recv_pending(false),_message_id(0),_message_len(0)
{
QObject::connect(&_socket, &QTcpSocket::connected, [&]() {
qDebug() << "Connected to server!";
// 连接建立后发送消息
emit sig_con_success(true);
});
QObject::connect(&_socket, &QTcpSocket::readyRead, [&]() {
// 当有数据可读时,读取所有数据
// 读取所有数据并追加到缓冲区
_buffer.append(_socket.readAll());
QDataStream stream(&_buffer, QIODevice::ReadOnly);
stream.setVersion(QDataStream::Qt_5_0);
forever {
//先解析头部
if(!_b_recv_pending){
// 检查缓冲区中的数据是否足够解析出一个消息头(消息ID + 消息长度)
if (_buffer.size() < static_cast<int>(sizeof(quint16) * 2)) {
return; // 数据不够,等待更多数据
}
// 预读取消息ID和消息长度,但不从缓冲区中移除
stream >> _message_id >> _message_len;
//将buffer 中的前四个字节移除
_buffer = _buffer.mid(sizeof(quint16) * 2);
// 输出读取的数据
qDebug() << "Message ID:" << _message_id << ", Length:" << _message_len;
}
//buffer剩余长读是否满足消息体长度,不满足则退出继续等待接受
if(_buffer.size() < _message_len){
_b_recv_pending = true;
return;
}
_b_recv_pending = false;
// 读取消息体
QByteArray messageBody = _buffer.mid(0, _message_len);
qDebug() << "receive body msg is " << messageBody ;
_buffer = _buffer.mid(_message_len);
}
});
// 处理错误(适用于Qt 5.15之前的版本)
QObject::connect(&_socket, static_cast<void (QTcpSocket::*)(QTcpSocket::SocketError)>(&QTcpSocket::error),
[&](QTcpSocket::SocketError socketError) {
qDebug() << "Error:" << _socket.errorString() ;
switch (socketError) {
case QTcpSocket::ConnectionRefusedError:
qDebug() << "Connection Refused!";
emit sig_con_success(false);
break;
case QTcpSocket::RemoteHostClosedError:
qDebug() << "Remote Host Closed Connection!";
break;
case QTcpSocket::HostNotFoundError:
qDebug() << "Host Not Found!";
emit sig_con_success(false);
break;
case QTcpSocket::SocketTimeoutError:
qDebug() << "Connection Timeout!";
emit sig_con_success(false);
break;
case QTcpSocket::NetworkError:
qDebug() << "Network Error!";
break;
default:
qDebug() << "Other Error!";
break;
}
});
// 处理连接断开
QObject::connect(&_socket, &QTcpSocket::disconnected, [&]() {
qDebug() << "Disconnected from server.";
});
QObject::connect(this, &TcpMgr::sig_send_data, this, &TcpMgr::slot_send_data);
}
连接对端服务器
cpp
void TcpMgr::slot_tcp_connect(ServerInfo si)
{
qDebug()<< "receive tcp connect signal";
// 尝试连接到服务器
qDebug() << "Connecting to server...";
_host = si.Host;
_port = static_cast<uint16_t>(si.Port.toUInt());
_socket.connectToHost(si.Host, _port);
}
因为客户端发送数据可能在任何线程,为了保证线程安全,我们在要发送数据时发送TcpMgr的sig_send_data信号,然后实现接受这个信号的槽函数
cpp
void TcpMgr::slot_send_data(ReqId reqId, QString data)
{
uint16_t id = reqId;
// 将字符串转换为UTF-8编码的字节数组
QByteArray dataBytes = data.toUtf8();
// 计算长度(使用网络字节序转换)
quint16 len = static_cast<quint16>(data.size());
// 创建一个QByteArray用于存储要发送的所有数据
QByteArray block;
QDataStream out(&block, QIODevice::WriteOnly);
// 设置数据流使用网络字节序
out.setByteOrder(QDataStream::BigEndian);
// 写入ID和长度
out << id << len;
// 添加字符串数据
block.append(data);
// 发送数据
_socket.write(block);
}
然后修改LoginDialog中的initHandlers中的收到服务器登陆回复后的逻辑,这里发送信号准备发起长链接到聊天服务器
cpp
void LoginDialog::initHttpHandlers()
{
//注册获取登录回包逻辑
_handlers.insert(ReqId::ID_LOGIN_USER, [this](QJsonObject jsonObj){
int error = jsonObj["error"].toInt();
if(error != ErrorCodes::SUCCESS){
showTip(tr("参数错误"),false);
enableBtn(true);
return;
}
auto user = jsonObj["user"].toString();
//发送信号通知tcpMgr发送长链接
ServerInfo si;
si.Uid = jsonObj["uid"].toInt();
si.Host = jsonObj["host"].toString();
si.Port = jsonObj["port"].toString();
si.Token = jsonObj["token"].toString();
_uid = si.Uid;
_token = si.Token;
qDebug()<< "user is " << user << " uid is " << si.Uid <<" host is "
<< si.Host << " Port is " << si.Port << " Token is " << si.Token;
emit sig_connect_tcp(si);
});
}
在LoginDialog构造函数中连接信号,包括建立tcp连接,以及收到TcpMgr连接成功或者失败的信号处理
cpp
//连接tcp连接请求的信号和槽函数
connect(this, &LoginDialog::sig_connect_tcp, TcpMgr::GetInstance().get(), &TcpMgr::slot_tcp_connect);
//连接tcp管理者发出的连接成功信号
connect(TcpMgr::GetInstance().get(), &TcpMgr::sig_con_success, this, &LoginDialog::slot_tcp_con_finish);
LoginDialog收到连接结果的槽函数
cpp
void LoginDialog::slot_tcp_con_finish(bool bsuccess)
{
if(bsuccess){
showTip(tr("聊天服务连接成功,正在登录..."),true);
QJsonObject jsonObj;
jsonObj["uid"] = _uid;
jsonObj["token"] = _token;
QJsonDocument doc(jsonObj);
QString jsonString = doc.toJson(QJsonDocument::Indented);
//发送tcp请求给chat server
TcpMgr::GetInstance()->sig_send_data(ReqId::ID_CHAT_LOGIN, jsonString);
}else{
showTip(tr("网络异常"),false);
enableBtn(true);
}
}
在这个槽函数中我们发送了sig_send_data信号并且通知TcpMgr将数据发送给服务器。
ChatServer
一个TCP服务器必然会有连接的接收,维持,收发数据等逻辑。那我们就要基于asio完成这个服务的搭建。主服务是这个样子的
cpp
#include "LogicSystem.h"
#include <csignal>
#include <thread>
#include <mutex>
#include "AsioIOServicePool.h"
#include "CServer.h"
#include "ConfigMgr.h"
using namespace std;
bool bstop = false;
std::condition_variable cond_quit;
std::mutex mutex_quit;
int main()
{
try {
auto &cfg = ConfigMgr::Inst();
auto pool = AsioIOServicePool::GetInstance();
boost::asio::io_context io_context;
boost::asio::signal_set signals(io_context, SIGINT, SIGTERM);
signals.async_wait([&io_context, pool](auto, auto) {
io_context.stop();
pool->Stop();
});
auto port_str = cfg["SelfServer"]["Port"];
CServer s(io_context, atoi(port_str.c_str()));
io_context.run();
}
catch (std::exception& e) {
std::cerr << "Exception: " << e.what() << endl;
}
}
CServer类的声明
cpp
#include <boost/asio.hpp>
#include "CSession.h"
#include <memory.h>
#include <map>
#include <mutex>
using namespace std;
using boost::asio::ip::tcp;
class CServer
{
public:
CServer(boost::asio::io_context& io_context, short port);
~CServer();
void ClearSession(std::string);
private:
void HandleAccept(shared_ptr<CSession>, const boost::system::error_code & error);
void StartAccept();
boost::asio::io_context &_io_context;
short _port;
tcp::acceptor _acceptor;
std::map<std::string, shared_ptr<CSession>> _sessions;
std::mutex _mutex;
};
构造函数中监听对方连接
cpp
CServer::CServer(boost::asio::io_context& io_context, short port):_io_context(io_context), _port(port),
_acceptor(io_context, tcp::endpoint(tcp::v4(),port))
{
cout << "Server start success, listen on port : " << _port << endl;
StartAccept();
}
接受连接的函数
cpp
void CServer::StartAccept() {
auto &io_context = AsioIOServicePool::GetInstance()->GetIOService();
shared_ptr<CSession> new_session = make_shared<CSession>(io_context, this);
_acceptor.async_accept(new_session->GetSocket(), std::bind(&CServer::HandleAccept, this, new_session, placeholders::_1));
}
AsioIOServicePool
从AsioIOServicePool中返回一个可用的iocontext构造Session,然后将接受的新链接的socket写入这个Session保管
AsioIOServicePool已经在前面讲解很多次了,它的声明如下
cpp
#include <vector>
#include <boost/asio.hpp>
#include "Singleton.h"
class AsioIOServicePool:public Singleton<AsioIOServicePool>
{
friend Singleton<AsioIOServicePool>;
public:
using IOService = boost::asio::io_context;
using Work = boost::asio::io_context::work;
using WorkPtr = std::unique_ptr<Work>;
~AsioIOServicePool();
AsioIOServicePool(const AsioIOServicePool&) = delete;
AsioIOServicePool& operator=(const AsioIOServicePool&) = delete;
// 使用 round-robin 的方式返回一个 io_service
boost::asio::io_context& GetIOService();
void Stop();
private:
AsioIOServicePool(std::size_t size = std::thread::hardware_concurrency());
std::vector<IOService> _ioServices;
std::vector<WorkPtr> _works;
std::vector<std::thread> _threads;
std::size_t _nextIOService;
};
AsioIOServicePool具体实现
cpp
#include "AsioIOServicePool.h"
#include <iostream>
using namespace std;
AsioIOServicePool::AsioIOServicePool(std::size_t size):_ioServices(size),
_works(size), _nextIOService(0){
for (std::size_t i = 0; i < size; ++i) {
_works[i] = std::unique_ptr<Work>(new Work(_ioServices[i]));
}
//遍历多个ioservice,创建多个线程,每个线程内部启动ioservice
for (std::size_t i = 0; i < _ioServices.size(); ++i) {
_threads.emplace_back([this, i]() {
_ioServices[i].run();
});
}
}
AsioIOServicePool::~AsioIOServicePool() {
std::cout << "AsioIOServicePool destruct" << endl;
}
boost::asio::io_context& AsioIOServicePool::GetIOService() {
auto& service = _ioServices[_nextIOService++];
if (_nextIOService == _ioServices.size()) {
_nextIOService = 0;
}
return service;
}
void AsioIOServicePool::Stop(){
//因为仅仅执行work.reset并不能让iocontext从run的状态中退出
//当iocontext已经绑定了读或写的监听事件后,还需要手动stop该服务
for (auto& work : _works) {
//把服务先停止
work->get_io_context().stop();
work.reset();
}
for (auto& t : _threads) {
t.join();
}
}
CServer的处理连接逻辑
cpp
void CServer::HandleAccept(shared_ptr<CSession> new_session, const boost::system::error_code& error){
if (!error) {
new_session->Start();
lock_guard<mutex> lock(_mutex);
_sessions.insert(make_pair(new_session->GetUuid(), new_session));
}
else {
cout << "session accept failed, error is " << error.what() << endl;
}
StartAccept();
}
Session层
上面的逻辑接受新链接后执行Start函数,新链接接受数据,然后Server继续监听新的连接
cpp
void CSession::Start(){
AsyncReadHead(HEAD_TOTAL_LEN);
}
先读取头部数据
cpp
void CSession::AsyncReadHead(int total_len)
{
auto self = shared_from_this();
asyncReadFull(HEAD_TOTAL_LEN, [self, this](const boost::system::error_code& ec, std::size_t bytes_transfered) {
try {
if (ec) {
std::cout << "handle read failed, error is " << ec.what() << endl;
Close();
_server->ClearSession(_uuid);
return;
}
if (bytes_transfered < HEAD_TOTAL_LEN) {
std::cout << "read length not match, read [" << bytes_transfered << "] , total ["
<< HEAD_TOTAL_LEN << "]" << endl;
Close();
_server->ClearSession(_uuid);
return;
}
_recv_head_node->Clear();
memcpy(_recv_head_node->_data, _data, bytes_transfered);
//获取头部MSGID数据
short msg_id = 0;
memcpy(&msg_id, _recv_head_node->_data, HEAD_ID_LEN);
//网络字节序转化为本地字节序
msg_id = boost::asio::detail::socket_ops::network_to_host_short(msg_id);
std::cout << "msg_id is " << msg_id << endl;
//id非法
if (msg_id > MAX_LENGTH) {
std::cout << "invalid msg_id is " << msg_id << endl;
_server->ClearSession(_uuid);
return;
}
short msg_len = 0;
memcpy(&msg_len, _recv_head_node->_data + HEAD_ID_LEN, HEAD_DATA_LEN);
//网络字节序转化为本地字节序
msg_len = boost::asio::detail::socket_ops::network_to_host_short(msg_len);
std::cout << "msg_len is " << msg_len << endl;
//id非法
if (msg_len > MAX_LENGTH) {
std::cout << "invalid data length is " << msg_len << endl;
_server->ClearSession(_uuid);
return;
}
_recv_msg_node = make_shared<RecvNode>(msg_len, msg_id);
AsyncReadBody(msg_len);
}
catch (std::exception& e) {
std::cout << "Exception code is " << e.what() << endl;
}
});
}
上面的逻辑里调用asyncReadFull读取整个长度,然后解析收到的数据,前两个字节为id,之后两个字节为长度,最后n个长度字节为消息内容
cpp
//读取完整长度
void CSession::asyncReadFull(std::size_t maxLength, std::function<void(const boost::system::error_code&, std::size_t)> handler )
{
::memset(_data, 0, MAX_LENGTH);
asyncReadLen(0, maxLength, handler);
}
读取指定长度
cpp
//读取指定字节数
void CSession::asyncReadLen(std::size_t read_len, std::size_t total_len,
std::function<void(const boost::system::error_code&, std::size_t)> handler)
{
auto self = shared_from_this();
_socket.async_read_some(boost::asio::buffer(_data + read_len, total_len-read_len),
[read_len, total_len, handler, self](const boost::system::error_code& ec, std::size_t bytesTransfered) {
if (ec) {
// 出现错误,调用回调函数
handler(ec, read_len + bytesTransfered);
return;
}
if (read_len + bytesTransfered >= total_len) {
//长度够了就调用回调函数
handler(ec, read_len + bytesTransfered);
return;
}
// 没有错误,且长度不足则继续读取
self->asyncReadLen(read_len + bytesTransfered, total_len, handler);
});
}
读取头部成功后,其回调函数内部调用了读包体的逻辑
cpp
void CSession::AsyncReadBody(int total_len)
{
auto self = shared_from_this();
asyncReadFull(total_len, [self, this, total_len](const boost::system::error_code& ec, std::size_t bytes_transfered) {
try {
if (ec) {
std::cout << "handle read failed, error is " << ec.what() << endl;
Close();
_server->ClearSession(_uuid);
return;
}
if (bytes_transfered < total_len) {
std::cout << "read length not match, read [" << bytes_transfered << "] , total ["
<< total_len<<"]" << endl;
Close();
_server->ClearSession(_uuid);
return;
}
memcpy(_recv_msg_node->_data , _data , bytes_transfered);
_recv_msg_node->_cur_len += bytes_transfered;
_recv_msg_node->_data[_recv_msg_node->_total_len] = '\0';
cout << "receive data is " << _recv_msg_node->_data << endl;
//此处将消息投递到逻辑队列中
LogicSystem::GetInstance()->PostMsgToQue(make_shared<LogicNode>(shared_from_this(), _recv_msg_node));
//继续监听头部接受事件
AsyncReadHead(HEAD_TOTAL_LEN);
}
catch (std::exception& e) {
std::cout << "Exception code is " << e.what() << endl;
}
});
}
读取包体完成后,在回调中继续读包头。以此循环往复直到读完所有数据。如果对方不发送数据,则回调函数就不会触发。不影响程序执行其他工作,因为我们采用的是asio异步的读写操作
当然我们解析完包体后会调用LogicSystem单例将解析好的消息封装为逻辑节点传递给逻辑层进行处理
LogicSystem
我们在逻辑层处理
cpp
void LogicSystem::RegisterCallBacks() {
_fun_callbacks[MSG_CHAT_LOGIN] = std::bind(&LogicSystem::LoginHandler, this,
placeholders::_1, placeholders::_2, placeholders::_3);
}
void LogicSystem::LoginHandler(shared_ptr<CSession> session, const short &msg_id, const string &msg_data) {
Json::Reader reader;
Json::Value root;
reader.parse(msg_data, root);
std::cout << "user login uid is " << root["uid"].asInt() << " user token is "
<< root["token"].asString() << endl;
std::string return_str = root.toStyledString();
session->Send(return_str, msg_id);
}
并在构造函数中注册这些处理流程
cpp
LogicSystem::LogicSystem():_b_stop(false){
RegisterCallBacks();
_worker_thread = std::thread (&LogicSystem::DealMsg, this);
}
总结
到此,完成了ChatServer收到QT客户端发送过来的长链接请求,并解析读取的数据,将收到的数据通过tcp发送给对端
token验证模块
完善proto
在proto文件里新增登陆验证服务
proto
message LoginReq{
int32 uid = 1;
string token= 2;
}
message LoginRsp {
int32 error = 1;
int32 uid = 2;
string token = 3;
}
service StatusService {
rpc GetChatServer (GetChatServerReq) returns (GetChatServerRsp) {}
rpc Login(LoginReq) returns(LoginRsp);
}
接下来是调用grpc命令生成新的pb文件覆盖原有的,并且也拷贝给StatusServer一份
我们完善登陆逻辑,先去StatusServer验证token是否合理,如果合理再从内存中寻找用户信息,如果没找到则从数据库加载一份
cpp
void LogicSystem::LoginHandler(shared_ptr<CSession> session, const short &msg_id, const string &msg_data) {
Json::Reader reader;
Json::Value root;
reader.parse(msg_data, root);
auto uid = root["uid"].asInt();
std::cout << "user login uid is " << uid << " user token is "
<< root["token"].asString() << endl;
//从状态服务器获取token匹配是否准确
auto rsp = StatusGrpcClient::GetInstance()->Login(uid, root["token"].asString());
Json::Value rtvalue;
Defer defer([this, &rtvalue, session]() {
std::string return_str = rtvalue.toStyledString();
session->Send(return_str, MSG_CHAT_LOGIN_RSP);
});
rtvalue["error"] = rsp.error();
if (rsp.error() != ErrorCodes::Success) {
return;
}
//内存中查询用户信息
auto find_iter = _users.find(uid);
std::shared_ptr<UserInfo> user_info = nullptr;
if (find_iter == _users.end()) {
//查询数据库
user_info = MysqlMgr::GetInstance()->GetUser(uid);
if (user_info == nullptr) {
rtvalue["error"] = ErrorCodes::UidInvalid;
return;
}
_users[uid] = user_info;
}
else {
user_info = find_iter->second;
}
rtvalue["uid"] = uid;
rtvalue["token"] = rsp.token();
rtvalue["name"] = user_info->name;
}
StatusServer验证token
在StatusServer验证token之前,我们需要在StatusServer中的GetServer的服务里将token写入内存
cpp
Status StatusServiceImpl::GetChatServer(ServerContext* context, const GetChatServerReq* request, GetChatServerRsp* reply)
{
std::string prefix("llfc status server has received : ");
const auto& server = getChatServer();
reply->set_host(server.host);
reply->set_port(server.port);
reply->set_error(ErrorCodes::Success);
reply->set_token(generate_unique_string());
insertToken(request->uid(), reply->token());
return Status::OK;
}
接下来我们实现登陆验证服务
cpp
Status StatusServiceImpl::Login(ServerContext* context, const LoginReq* request, LoginRsp* reply)
{
auto uid = request->uid();
auto token = request->token();
std::lock_guard<std::mutex> guard(_token_mtx);
auto iter = _tokens.find(uid);
if (iter == _tokens.end()) {
reply->set_error(ErrorCodes::UidInvalid);
return Status::OK;
}
if (iter->second != token) {
reply->set_error(ErrorCodes::TokenInvalid);
return Status::OK;
}
reply->set_error(ErrorCodes::Success);
reply->set_uid(uid);
reply->set_token(token);
return Status::OK;
}
这样当GateServer访问StatusServer的Login服务做验证后,就可以将数据返回给QT前端了
客户端处理登陆回包
QT 的客户端TcpMgr收到请求后要进行对应的逻辑处理。所以我们在TcpMgr的构造函数中调用initHandlers注册消息
cpp
void TcpMgr::initHandlers()
{
//auto self = shared_from_this();
_handlers.insert(ID_CHAT_LOGIN_RSP, [this](ReqId id, int len, QByteArray data){
qDebug()<< "handle id is "<< id << " data is " << data;
// 将QByteArray转换为QJsonDocument
QJsonDocument jsonDoc = QJsonDocument::fromJson(data);
// 检查转换是否成功
if(jsonDoc.isNull()){
qDebug() << "Failed to create QJsonDocument.";
return;
}
QJsonObject jsonObj = jsonDoc.object();
if(!jsonObj.contains("error")){
int err = ErrorCodes::ERR_JSON;
qDebug() << "Login Failed, err is Json Parse Err" << err ;
emit sig_login_failed(err);
return;
}
int err = jsonObj["error"].toInt();
if(err != ErrorCodes::SUCCESS){
qDebug() << "Login Failed, err is " << err ;
emit sig_login_failed(err);
return;
}
UserMgr::GetInstance()->SetUid(jsonObj["uid"].toInt());
UserMgr::GetInstance()->SetName(jsonObj["name"].toString());
UserMgr::GetInstance()->SetToken(jsonObj["token"].toString());
emit sig_swich_chatdlg();
});
}
并且增加处理请求
cpp
void TcpMgr::handleMsg(ReqId id, int len, QByteArray data)
{
auto find_iter = _handlers.find(id);
if(find_iter == _handlers.end()){
qDebug()<< "not found id ["<< id << "] to handle";
return ;
}
find_iter.value()(id,len,data);
}
用户管理
为管理用户数据,需要创建一个UserMgr类,统一管理用户数据,我们这么声明
cpp
#ifndef USERMGR_H
#define USERMGR_H
#include <QObject>
#include <memory>
#include <singleton.h>
class UserMgr:public QObject,public Singleton<UserMgr>,
public std::enable_shared_from_this<UserMgr>
{
Q_OBJECT
public:
friend class Singleton<UserMgr>;
~ UserMgr();
void SetName(QString name);
void SetUid(int uid);
void SetToken(QString token);
private:
UserMgr();
QString _name;
QString _token;
int _uid;
};
#endif // USERMGR_H
简单实现几个功能
cpp
#include "usermgr.h"
UserMgr::~UserMgr()
{
}
void UserMgr::SetName(QString name)
{
_name = name;
}
void UserMgr::SetUid(int uid)
{
_uid = uid;
}
void UserMgr::SetToken(QString token)
{
_token = token;
}
UserMgr::UserMgr()
{
}
详细和复杂的管理后续不断往这里补充就行了
登陆界面
登陆界面响应TcpMgr返回的登陆请求,在其构造函数中添加
cpp
//连接tcp管理者发出的登陆失败信号
connect(TcpMgr::GetInstance().get(), &TcpMgr::sig_login_failed, this, &LoginDialog::slot_login_failed);
并实现槽函数
cpp
void LoginDialog::slot_login_failed(int err)
{
QString result = QString("登录失败, err is %1")
.arg(err);
showTip(result,false);
enableBtn(true);
}
到此完成了登陆的请求和响应,接下来要实现响应登陆成功后跳转到聊天界面。下一篇先实现聊天布局。