自然语言处理基本概念

自然语言处理基本概念

所有学习循环神经网络的人都是看这一篇博客长大的:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

python 复制代码
import jieba
import torch
from torch import nn

s1 = "我吃饭了!"
s2 = "今天天气很好!"
s3 = "这辆车很好看!"

jieba.lcut(s3)
words = {word for sentence in [s1, s2, s3] for word in jieba.lcut(sentence)}
words.add("<UNK>")
words.add("<PAD>")
print(words)

word2idx = {word: idx for idx, word in enumerate(words)}
idx2word = {idx: word for word, idx in word2idx.items()}
print(word2idx)
print(idx2word)

idx1 = [word2idx.get(word, word2idx.get("<UNK>")) for word in jieba.lcut(s1)]
idx2 = [word2idx.get(word, word2idx.get("<UNK>")) for word in jieba.lcut(s2)]
idx3 = [word2idx.get(word, word2idx.get("<UNK>")) for word in jieba.lcut(s3)]
print(idx1,idx2,idx3)

# 补 1 个 pad
idx1 += [word2idx.get("<PAD>")]
idx2 += [word2idx.get("<PAD>")]
print(idx1,idx2,idx3)

# 转张量
X = torch.tensor(data=[idx1, idx2, idx3], dtype=torch.long).T
# [seq_len, batch_size]
print(X.shape)

# word embedding
embed = nn.Embedding(num_embeddings=len(word2idx), embedding_dim=6)
print(len(word2idx))

# [3, 5, 12] --> [3, 5, 6]
# [batch_size, seq_len, embedding_dim]
print(embed(X).shape)

# [N, C, H, W]
# [N, Seq_len, Embedding_dim]
print(nn.RNN)

# $h_t = \tanh(x_t W_{ih}^T + b_{ih} + h_{t-1}W_{hh}^T + b_{hh})$
rnn = nn.RNN(input_size=6, hidden_size=7, batch_first=False)
X1 = embed(X)
out, hn = rnn(X1)

# 每一步的输出
print(out.shape)
# 最后一步的输出
print(hn.shape)

print(out[-1, :, :])
print(hn)


class Model(nn.Module):
    def __init__(self, dict_len=5000, embedding_dim=256, n_classes=2):
        super().__init__()
        # 嵌入:词向量
        self.embed = nn.Embedding(num_embeddings=dict_len,
                                  embedding_dim=embedding_dim)
        # 循环神经网络提取特征
        self.rnn = nn.RNN(input_size=embedding_dim,
                          hidden_size=embedding_dim)
        # 转换输出
        self.out = nn.Linear(in_features=embedding_dim,
                             out_features=n_classes)

    def forward(self, x):
        # [seq_len, batch_size] --> [seq_len, batch_size, embedding_dim]
        x = self.embed(x)
        # out: [seq_len, batch_size, embedding_dim]
        # hn: [1, batch_size, embedding_dim]
        out, hn = self.rnn(x)
        # [1, batch_size, embedding_dim] --> [batch_size, embedding_dim]
        x = torch.squeeze(input=hn, dim=0)
        # [batch_size, embedding_dim] --> [batch_size, n_classes]
        x = self.out(x)
        return x

model = Model(dict_len=5000, embedding_dim=256, n_classes=2)
print(model)

X = torch.randint(low=0, high=5000, size=(26, 3), dtype=torch.long)
# [seq_len, batch_size]
print(X.shape)

# [batch_size, n_classes]
print(model(X).shape)
相关推荐
牛客企业服务4 分钟前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
视觉语言导航35 分钟前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
**梯度已爆炸**1 小时前
自然语言处理入门
人工智能·自然语言处理
ctrlworks1 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂2 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊2 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道2 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~2 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子2 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya2 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作