10个使用Numba CUDA进行编程的例子

以下是10个使用Numba CUDA进行编程的例子,这些例子涵盖了基本的向量加法、矩阵乘法以及其他一些常见操作:

  1. 向量加法
python 复制代码
from numba import cuda
import numpy as np
@cuda.jit
def vector_add(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] + b[i]
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
vector_add[blocks_per_grid, threads_per_block](a, b, c)
print(c)
  1. 矩阵乘法
python 复制代码
@cuda.jit
def matmul(A, B, C):
    i, j = cuda.grid(2)
    if i < C.shape[0] and j < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[i, k] * B[k, j]
        C[i, j] = tmp
A = np.array([[1, 2], [3, 4]], dtype=np.float32)
B = np.array([[5, 6], [7, 8]], dtype=np.float32)
C = np.zeros((2, 2), dtype=np.float32)
threads_per_block = (16, 16)
blocks_per_grid_x = math.ceil(A.shape[0] / threads_per_block[0])
blocks_per_grid_y = math.ceil(B.shape[1] / threads_per_block[1])
blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
matmul[blocks_per_grid, threads_per_block](A, B, C)
print(C)
  1. 向量点乘
python 复制代码
@cuda.jit
def dot_product(a, b, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i] * b[i]
    cuda.atomic.add(result, 0, tmp)
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
result = np.zeros(1, dtype=np.float32)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
dot_product[blocks_per_grid, threads_per_block](a, b, result)
print(result[0])
  1. 向量乘法
python 复制代码
@cuda.jit
def vector_multiply(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] * b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量除法
python 复制代码
@cuda.jit
def vector_divide(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] / b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量求和
python 复制代码
@cuda.jit
def vector_sum(a, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i]
    cuda.atomic.add(result, 0, tmp)
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最大值
python 复制代码
@cuda.jit
def vector_max(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.max(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最小值
python 复制代码
@cuda.jit
def vector_min(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.min(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量排序(冒泡排序)
python 复制代码
@cuda.jit
def bubble_sort(arr):
    i = cuda.grid(1)
    n = arr.shape[0]
    if i < n:
        for j in range(n - 1):
            if arr[i] > arr[j]:
                arr[i], arr[j] = arr[j], arr[i]
# 同向量加法示例中的初始化
相关推荐
Hunter_pcx19 分钟前
[C++技能提升]类注册
c++·人工智能
东临碣石8242 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
涛涛讲AI2 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区2 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly2 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝2 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
笔触狂放2 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH223 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
格林威3 小时前
BroadCom-RDMA博通网卡如何进行驱动安装和设置使得对应网口具有RDMA功能以适配RDMA相机
人工智能·数码相机·opencv·计算机视觉·c#