10个使用Numba CUDA进行编程的例子

以下是10个使用Numba CUDA进行编程的例子,这些例子涵盖了基本的向量加法、矩阵乘法以及其他一些常见操作:

  1. 向量加法
python 复制代码
from numba import cuda
import numpy as np
@cuda.jit
def vector_add(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] + b[i]
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
vector_add[blocks_per_grid, threads_per_block](a, b, c)
print(c)
  1. 矩阵乘法
python 复制代码
@cuda.jit
def matmul(A, B, C):
    i, j = cuda.grid(2)
    if i < C.shape[0] and j < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[i, k] * B[k, j]
        C[i, j] = tmp
A = np.array([[1, 2], [3, 4]], dtype=np.float32)
B = np.array([[5, 6], [7, 8]], dtype=np.float32)
C = np.zeros((2, 2), dtype=np.float32)
threads_per_block = (16, 16)
blocks_per_grid_x = math.ceil(A.shape[0] / threads_per_block[0])
blocks_per_grid_y = math.ceil(B.shape[1] / threads_per_block[1])
blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
matmul[blocks_per_grid, threads_per_block](A, B, C)
print(C)
  1. 向量点乘
python 复制代码
@cuda.jit
def dot_product(a, b, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i] * b[i]
    cuda.atomic.add(result, 0, tmp)
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
result = np.zeros(1, dtype=np.float32)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
dot_product[blocks_per_grid, threads_per_block](a, b, result)
print(result[0])
  1. 向量乘法
python 复制代码
@cuda.jit
def vector_multiply(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] * b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量除法
python 复制代码
@cuda.jit
def vector_divide(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] / b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量求和
python 复制代码
@cuda.jit
def vector_sum(a, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i]
    cuda.atomic.add(result, 0, tmp)
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最大值
python 复制代码
@cuda.jit
def vector_max(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.max(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最小值
python 复制代码
@cuda.jit
def vector_min(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.min(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量排序(冒泡排序)
python 复制代码
@cuda.jit
def bubble_sort(arr):
    i = cuda.grid(1)
    n = arr.shape[0]
    if i < n:
        for j in range(n - 1):
            if arr[i] > arr[j]:
                arr[i], arr[j] = arr[j], arr[i]
# 同向量加法示例中的初始化
相关推荐
SmartBrain39 分钟前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成7 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃7 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)7 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑