10个使用Numba CUDA进行编程的例子

以下是10个使用Numba CUDA进行编程的例子,这些例子涵盖了基本的向量加法、矩阵乘法以及其他一些常见操作:

  1. 向量加法
python 复制代码
from numba import cuda
import numpy as np
@cuda.jit
def vector_add(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] + b[i]
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
vector_add[blocks_per_grid, threads_per_block](a, b, c)
print(c)
  1. 矩阵乘法
python 复制代码
@cuda.jit
def matmul(A, B, C):
    i, j = cuda.grid(2)
    if i < C.shape[0] and j < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[i, k] * B[k, j]
        C[i, j] = tmp
A = np.array([[1, 2], [3, 4]], dtype=np.float32)
B = np.array([[5, 6], [7, 8]], dtype=np.float32)
C = np.zeros((2, 2), dtype=np.float32)
threads_per_block = (16, 16)
blocks_per_grid_x = math.ceil(A.shape[0] / threads_per_block[0])
blocks_per_grid_y = math.ceil(B.shape[1] / threads_per_block[1])
blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
matmul[blocks_per_grid, threads_per_block](A, B, C)
print(C)
  1. 向量点乘
python 复制代码
@cuda.jit
def dot_product(a, b, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i] * b[i]
    cuda.atomic.add(result, 0, tmp)
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
result = np.zeros(1, dtype=np.float32)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
dot_product[blocks_per_grid, threads_per_block](a, b, result)
print(result[0])
  1. 向量乘法
python 复制代码
@cuda.jit
def vector_multiply(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] * b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量除法
python 复制代码
@cuda.jit
def vector_divide(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] / b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量求和
python 复制代码
@cuda.jit
def vector_sum(a, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i]
    cuda.atomic.add(result, 0, tmp)
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最大值
python 复制代码
@cuda.jit
def vector_max(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.max(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最小值
python 复制代码
@cuda.jit
def vector_min(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.min(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量排序(冒泡排序)
python 复制代码
@cuda.jit
def bubble_sort(arr):
    i = cuda.grid(1)
    n = arr.shape[0]
    if i < n:
        for j in range(n - 1):
            if arr[i] > arr[j]:
                arr[i], arr[j] = arr[j], arr[i]
# 同向量加法示例中的初始化
相关推荐
大佬,救命!!!34 分钟前
最新的python3.14版本下仿真环境配置深度学习机器学习相关
开发语言·人工智能·python·深度学习·机器学习·学习笔记·环境配置
工业机器视觉设计和实现39 分钟前
用caffe做个人脸识别
人工智能·深度学习·caffe
paperxie_xiexuo1 小时前
从研究问题到分析初稿:深度解析PaperXie AI科研工具中数据分析模块在学术写作场景下的辅助逻辑与技术实现路径
人工智能·数据挖掘·数据分析
T***u3331 小时前
Java机器学习框架
java·开发语言·机器学习
一水鉴天1 小时前
整体设计 定稿 之9 拼语言工具设计之前 的 备忘录仪表盘(CodeBuddy)
人工智能·架构·公共逻辑
vvoennvv1 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow
IT_陈寒1 小时前
Python性能提升50%:这5个隐藏技巧让你的代码快如闪电⚡
前端·人工智能·后端
AI大模型学徒2 小时前
NLP基础(九)_N-gram模型
人工智能·自然语言处理·nlp·n-gram
极客BIM工作室2 小时前
理清 BERT 中 [CLS] 向量的核心逻辑:训练双向更新与推理作用不矛盾
人工智能·机器学习·bert