10个使用Numba CUDA进行编程的例子

以下是10个使用Numba CUDA进行编程的例子,这些例子涵盖了基本的向量加法、矩阵乘法以及其他一些常见操作:

  1. 向量加法
python 复制代码
from numba import cuda
import numpy as np
@cuda.jit
def vector_add(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] + b[i]
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
vector_add[blocks_per_grid, threads_per_block](a, b, c)
print(c)
  1. 矩阵乘法
python 复制代码
@cuda.jit
def matmul(A, B, C):
    i, j = cuda.grid(2)
    if i < C.shape[0] and j < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[i, k] * B[k, j]
        C[i, j] = tmp
A = np.array([[1, 2], [3, 4]], dtype=np.float32)
B = np.array([[5, 6], [7, 8]], dtype=np.float32)
C = np.zeros((2, 2), dtype=np.float32)
threads_per_block = (16, 16)
blocks_per_grid_x = math.ceil(A.shape[0] / threads_per_block[0])
blocks_per_grid_y = math.ceil(B.shape[1] / threads_per_block[1])
blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
matmul[blocks_per_grid, threads_per_block](A, B, C)
print(C)
  1. 向量点乘
python 复制代码
@cuda.jit
def dot_product(a, b, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i] * b[i]
    cuda.atomic.add(result, 0, tmp)
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
result = np.zeros(1, dtype=np.float32)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
dot_product[blocks_per_grid, threads_per_block](a, b, result)
print(result[0])
  1. 向量乘法
python 复制代码
@cuda.jit
def vector_multiply(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] * b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量除法
python 复制代码
@cuda.jit
def vector_divide(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] / b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量求和
python 复制代码
@cuda.jit
def vector_sum(a, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i]
    cuda.atomic.add(result, 0, tmp)
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最大值
python 复制代码
@cuda.jit
def vector_max(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.max(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最小值
python 复制代码
@cuda.jit
def vector_min(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.min(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量排序(冒泡排序)
python 复制代码
@cuda.jit
def bubble_sort(arr):
    i = cuda.grid(1)
    n = arr.shape[0]
    if i < n:
        for j in range(n - 1):
            if arr[i] > arr[j]:
                arr[i], arr[j] = arr[j], arr[i]
# 同向量加法示例中的初始化
相关推荐
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7252 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h3 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路3 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿3 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312313 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘