10个使用Numba CUDA进行编程的例子

以下是10个使用Numba CUDA进行编程的例子,这些例子涵盖了基本的向量加法、矩阵乘法以及其他一些常见操作:

  1. 向量加法
python 复制代码
from numba import cuda
import numpy as np
@cuda.jit
def vector_add(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] + b[i]
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
vector_add[blocks_per_grid, threads_per_block](a, b, c)
print(c)
  1. 矩阵乘法
python 复制代码
@cuda.jit
def matmul(A, B, C):
    i, j = cuda.grid(2)
    if i < C.shape[0] and j < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[i, k] * B[k, j]
        C[i, j] = tmp
A = np.array([[1, 2], [3, 4]], dtype=np.float32)
B = np.array([[5, 6], [7, 8]], dtype=np.float32)
C = np.zeros((2, 2), dtype=np.float32)
threads_per_block = (16, 16)
blocks_per_grid_x = math.ceil(A.shape[0] / threads_per_block[0])
blocks_per_grid_y = math.ceil(B.shape[1] / threads_per_block[1])
blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
matmul[blocks_per_grid, threads_per_block](A, B, C)
print(C)
  1. 向量点乘
python 复制代码
@cuda.jit
def dot_product(a, b, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i] * b[i]
    cuda.atomic.add(result, 0, tmp)
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
result = np.zeros(1, dtype=np.float32)
threads_per_block = 32
blocks_per_grid = (len(a) + (threads_per_block - 1)) // threads_per_block
dot_product[blocks_per_grid, threads_per_block](a, b, result)
print(result[0])
  1. 向量乘法
python 复制代码
@cuda.jit
def vector_multiply(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] * b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量除法
python 复制代码
@cuda.jit
def vector_divide(a, b, c):
    i = cuda.grid(1)
    if i < len(a):
        c[i] = a[i] / b[i]
# 同向量加法示例中的初始化和调用方式
  1. 向量求和
python 复制代码
@cuda.jit
def vector_sum(a, result):
    i = cuda.grid(1)
    tmp = 0.0
    if i < a.shape[0]:
        tmp = a[i]
    cuda.atomic.add(result, 0, tmp)
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最大值
python 复制代码
@cuda.jit
def vector_max(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.max(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量求最小值
python 复制代码
@cuda.jit
def vector_min(a, result):
    i = cuda.grid(1)
    if i < a.shape[0]:
        cuda.atomic.min(result, 0, a[i])
# 同向量点乘示例中的初始化和调用方式
  1. 向量排序(冒泡排序)
python 复制代码
@cuda.jit
def bubble_sort(arr):
    i = cuda.grid(1)
    n = arr.shape[0]
    if i < n:
        for j in range(n - 1):
            if arr[i] > arr[j]:
                arr[i], arr[j] = arr[j], arr[i]
# 同向量加法示例中的初始化
相关推荐
rocksun43 分钟前
为什么人工智能需要一种新的可观测性方法
人工智能
柠檬味拥抱1 小时前
生成式物理引擎在人工智能训练中的关键作用与发展趋势研究
人工智能
新加坡内哥谈技术1 小时前
Siri在WWDC中的缺席显得格外刺眼
人工智能·ios·wwdc
deephub1 小时前
提升长序列建模效率:Mamba+交叉注意力架构完整指南
人工智能·深度学习·时间序列·mamba·交叉注意力
神经星星1 小时前
入选 ICML 2025,清华/人大提出统一生物分子动力学模拟器 UniSim
人工智能·深度学习·机器学习
机器学习之心1 小时前
光伏功率预测 | BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)
人工智能·神经网络·matlab
layneyao1 小时前
Ray框架:分布式AI训练与调参实践
人工智能·分布式
vlln2 小时前
【论文解读】Search-R1:通过 RL 让 LLM 学会使用搜索引擎
人工智能·深度学习·神经网络·搜索引擎·transformer
alfred_torres2 小时前
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
人工智能·语言模型·自然语言处理
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像处理——图像的多种属性、RGB与BGR色彩空间、HSB、HSV与HSL、ROI区域)
图像处理·人工智能·opencv