MMLab-dataset_analysis

数据分析工具

这里写目录标题

mmyolo、mmsegmentation等提供了数据集分析工具

dataset_analysis.py

数据采用coco格式数据

根据配置文件分析全部数据类型或指定类型的Bbox_num、bbox_wh\bbox_wh_ratio、bbox_area

示例数据采用的是讯飞X光安检物品监测数据集,通过结果可以看出Knife、wrench、powerbank等小物品的数据相对较少,Knife类别最少,存在显著的类别不平衡问题。

数据可视化分析

  • bbox_area
  • bbox_ratio
  • bbox_wh

benchmark.py

测试模型性能:推理速度

!python /root/mmyolo/tools/analysis_tools/browse_coco_json.py --data-root /root/autodl-tmp/train --img-dir /root/autodl-tmp/train/images/ --ann-file /root/autodl-tmp/train/annotations/instances_train2014.json

browse_coco_json.py

将数据集与标签进行可视化

browse_dataset.py

-将数据可视化保存输出到文件夹下,包含两种模式

-m:'original', 'transformed', 'pipeline'

'original':金输出原始图像

'transformed':输出变换后的图像

'pipeline':输出数据增流各个阶段的图像

Optimize_anchors

通过分析数据,优化先验anchor的设置,仅支持YOLOAnchorGenerator

"""Optimize anchor settings on a specific dataset.

This script provides three methods to optimize YOLO anchors including k-means

anchor cluster, differential evolution and v5-k-means. You can use
--algorithm k-means, --algorithm differential_evolution and
--algorithm v5-k-means to switch those methods.

Example:

复制代码
Use k-means anchor cluster::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --out-dir ${OUT_DIR}

Use differential evolution to optimize anchors::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm differential_evolution \
    --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --out-dir ${OUT_DIR}

Use v5-k-means to optimize anchors::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm v5-k-means \
    --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --prior_match_thr ${PRIOR_MATCH_THR} \
    --out-dir ${OUT_DIR}

该工具默认调用gpu进行数据计算,算法名称还有个小bug,需要注意一下

python 复制代码
 if args.algorithm == 'k-means':
      optimizer = YOLOKMeansAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          logger=logger,
          out_dir=args.out_dir)
  elif args.algorithm == 'DE':
      optimizer = YOLODEAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          logger=logger,
          out_dir=args.out_dir)
  elif args.algorithm == 'v5-k-means':
      optimizer = YOLOV5KMeansAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          prior_match_thr=args.prior_match_thr,
          mutation_args=args.mutation_args,
          augment_args=args.augment_args,
          logger=logger,
          out_dir=args.out_dir)
  else:
      raise NotImplementedError(
          f'Only support k-means and differential_evolution, '
          f'but get {args.algorithm}')
相关推荐
东城居士1 小时前
初步尝试获得了xlsx文件的数据可视化
信息可视化
Guheyunyi18 小时前
安全风险监测预警系统如何重塑企业安全防线
大数据·人工智能·科技·安全·信息可视化
电商API_1800790524718 小时前
淘宝评论API技术解析与调用实战指南
开发语言·爬虫·信息可视化
饼干,1 天前
Python数据可视化速成指南
开发语言·python·信息可视化
CodeCraft Studio1 天前
Excel处理控件Aspose.Cells教程:使用C#在Excel中创建气泡图
信息可视化·c#·excel·aspose·excel api库·excel气泡图·excel组件库
大数据魔法师1 天前
昭通天气数据分析与挖掘(三)- 昭通天气数据可视化分析
信息可视化·数据分析·finebi
AI工具指南1 天前
2025年AI生成PPT工具技术评测:主流方案对比与选型指南
人工智能·信息可视化·powerpoint
Elastic 中国社区官方博客2 天前
让我们把这个 expense 工具从 n8n 迁移到 Elastic One Workflow
大数据·运维·elasticsearch·搜索引擎·ai·信息可视化·全文检索
倔强的小石头_2 天前
Python 从入门到实战(十一):数据可视化(用图表让数据 “说话”)
开发语言·python·信息可视化
Elastic 中国社区官方博客3 天前
Kibana:使用 ES|QL 构建地图,对国家或地区的指标进行对比
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana