MMLab-dataset_analysis

数据分析工具

这里写目录标题

mmyolo、mmsegmentation等提供了数据集分析工具

dataset_analysis.py

数据采用coco格式数据

根据配置文件分析全部数据类型或指定类型的Bbox_num、bbox_wh\bbox_wh_ratio、bbox_area

示例数据采用的是讯飞X光安检物品监测数据集,通过结果可以看出Knife、wrench、powerbank等小物品的数据相对较少,Knife类别最少,存在显著的类别不平衡问题。

数据可视化分析

  • bbox_area
  • bbox_ratio
  • bbox_wh

benchmark.py

测试模型性能:推理速度

!python /root/mmyolo/tools/analysis_tools/browse_coco_json.py --data-root /root/autodl-tmp/train --img-dir /root/autodl-tmp/train/images/ --ann-file /root/autodl-tmp/train/annotations/instances_train2014.json

browse_coco_json.py

将数据集与标签进行可视化

browse_dataset.py

-将数据可视化保存输出到文件夹下,包含两种模式

-m:'original', 'transformed', 'pipeline'

'original':金输出原始图像

'transformed':输出变换后的图像

'pipeline':输出数据增流各个阶段的图像

Optimize_anchors

通过分析数据,优化先验anchor的设置,仅支持YOLOAnchorGenerator

"""Optimize anchor settings on a specific dataset.

This script provides three methods to optimize YOLO anchors including k-means

anchor cluster, differential evolution and v5-k-means. You can use
--algorithm k-means, --algorithm differential_evolution and
--algorithm v5-k-means to switch those methods.

Example:

复制代码
Use k-means anchor cluster::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --out-dir ${OUT_DIR}

Use differential evolution to optimize anchors::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm differential_evolution \
    --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --out-dir ${OUT_DIR}

Use v5-k-means to optimize anchors::

    python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
    --algorithm v5-k-means \
    --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
    --prior_match_thr ${PRIOR_MATCH_THR} \
    --out-dir ${OUT_DIR}

该工具默认调用gpu进行数据计算,算法名称还有个小bug,需要注意一下

python 复制代码
 if args.algorithm == 'k-means':
      optimizer = YOLOKMeansAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          logger=logger,
          out_dir=args.out_dir)
  elif args.algorithm == 'DE':
      optimizer = YOLODEAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          logger=logger,
          out_dir=args.out_dir)
  elif args.algorithm == 'v5-k-means':
      optimizer = YOLOV5KMeansAnchorOptimizer(
          dataset=dataset,
          input_shape=input_shape,
          device=args.device,
          num_anchor_per_level=num_anchor_per_level,
          iters=args.iters,
          prior_match_thr=args.prior_match_thr,
          mutation_args=args.mutation_args,
          augment_args=args.augment_args,
          logger=logger,
          out_dir=args.out_dir)
  else:
      raise NotImplementedError(
          f'Only support k-means and differential_evolution, '
          f'but get {args.algorithm}')
相关推荐
派可数据BI可视化8 小时前
数据中台、BI业务访谈(二):组织架构梳理的坑
数据仓库·人工智能·信息可视化·数据分析·商业智能bi
晨曦5432108 小时前
绘图与数据可视化
信息可视化·数据挖掘·数据分析
橘猫云计算机设计9 小时前
基于Python电影数据的实时分析可视化系统(源码+lw+部署文档+讲解),源码可白嫖!
数据库·后端·python·信息可视化·小程序·毕业设计
橘猫云计算机设计15 小时前
基于php的成绩分析和预警与预测网站(源码+lw+部署文档+讲解),源码可白嫖!
开发语言·后端·信息可视化·毕业设计·php
小白—人工智能16 小时前
数据可视化 —— 堆形图应用(大全)
python·信息可视化·数据可视化
杨超越luckly2 天前
HTML应用指南:利用GET请求获取全国汉堡王门店位置信息
大数据·前端·信息可视化·数据分析·html
IT从业者张某某2 天前
Python数据可视化-第7章-绘制3D图表和统计地图
python·3d·信息可视化
小白—人工智能2 天前
数据可视化 —— 多边图应用(大全)
python·信息可视化·数据可视化
拾荒的小海螺2 天前
【数据分析实战】使用 Matplotlib 绘制折线图
信息可视化·数据分析·matplotlib
穆易青3 天前
2025.04.09【Sankey】| 生信数据流可视化精讲
信息可视化