自动驾驶-端到端分割任务

上采样

bed of nails

interpolation

transposed convolutions

1. 上采样 (Upsampling)

上采样是一种技术,用于增加数据集中的样本数量或是提高信号的分辨率。在图像处理中,上采样通常指的是增加图像的像素数量,从而使图像变得更大。这可以通过各种插值方法实现,如最近邻插值、双线性插值、三次插值等。

2. Bed of Nails

"Bed of Nails"是一种特定的上采样方法,其在信号处理中较为少见。在这种方法中,原始信号的每个样本之间插入一定数量的零值,基本上是在原有样本点保持不变的情况下,通过增加零来扩展信号。这种方法通常用作其他处理步骤(如滤波)的预处理步骤。

3. 插值 (Interpolation)

插值是一种数学和工程技术,用于通过已知数据点生成新数据点。在图像处理中,插值算法用于图像缩放时计算新像素点的值。常见的插值方法包括:

  • 最近邻插值:选择最近的像素值作为新像素的值。
  • 双线性插值:基于四个最近的像素点,通过线性方程计算新像素的值。
  • 三次插值:使用16个相邻像素来提高插值的平滑度和精确度。

4. Transposed Convolutions(转置卷积)

转置卷积,有时也被称为分数步长卷积或逆卷积,是一种特殊的卷积操作,通常用于深度学习中的生成模型,如自动编码器和生成对抗网络(GAN)中。其主要目的是进行特征图的上采样,即将低维度的特征图转换为高维度的输出。与普通卷积相反,转置卷积通过填充输入特征图中的间隙(通常填充0)和执行卷积操作来实现输出特征图尺寸的扩展。这使得模型能够从压缩表示中重建出更详细的数据或图像。

这些技术在计算机视觉、图像增强、超分辨率和许多其他深度学习应用中都非常重要,它们帮助模型在处理各种尺寸的数据时保持灵活性和效率。

全卷积网络架构

主干网络 VGG image classfication network

https://www.mygreatlearning.com/blog/fcn-fully-convolutional-network-semantic-segmentation/

全卷积网络(FCN)

全卷积网络(FCN)最初由Jonathan Long, Evan Shelhamer, 和Trevor Darrell在2014年提出,用于进行图像的像素级分类,也就是语义分割。FCN的关键创新是使用卷积层替代了传统卷积神经网络(CNN)中的全连接层,使得网络能够接受任意尺寸的输入图像。

FCN的主要特点和架构包括:

  1. 全卷积化:传统的CNN在卷积层后通常包含几个全连接层,这限制了输入图像的尺寸。FCN将这些全连接层转换为卷积层,从而可以处理任何尺寸的输入。
  2. 上采样和跳跃连接:FCN通过使用转置卷积(有时称为逆卷积)层进行上采样,恢复图像的原始尺寸。此外,FCN使用跳跃连接将低层特征和高层特征结合起来,以保持边缘等细节信息。
  3. 端到端训练:FCN可以从头到尾进行训练,而不需要任何预处理或后处理步骤,可以直接输出像素级的预测图。

VGG网络(Visual Geometry Group)

https://www.mygreatlearning.com/blog/introduction-to-vgg16/

VGG网络是由牛津大学的Visual Geometry Group开发,首次在2014年的ILSVRC(ImageNet Large Scale Visual Recognition Challenge)中介绍。VGG网络是通过简化卷积网络结构的复杂性,同时提升深度来提高性能的典型例子。

VGG网络的特点如下:

  1. 简单且统一的架构:VGG网络主要由3x3的卷积层和2x2的最大池化层交替构成,使用的是非常小的感受野,但通过堆叠多个卷积层来增加网络的深度。
  2. 多个版本:VGG有几种不同的版本,常见的有VGG-16和VGG-19,数字代表网络中权重层的数量。VGG-16包含13个卷积层和3个全连接层,VGG-19则有16个卷积层和3个全连接层。
  3. 特征提取效果好:尽管VGG网络的结构较为简单,但其在特征提取上表现优异,被广泛用作许多视觉任务的预训练模型。

VGG网络由于其出色的特征提取能力,常被用作其他复杂任务(如**图像分割)**的主干网络。例如,在FCN中,可以使用预训练的VGG网络作为特征提取的基础架构,后续通过上述的全卷积化和上采样技术进行语义分割的任务。这样的组合利用了VGG的深度和强大的特征提取能力,同时通过FCN实现了对任意大小图像的精确像素级处理。

相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦2 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐3 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao4 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!4 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统