AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤 涉及的每一个公式和公式为什么这么设计。

AdaBoost集成学习算法基本上遵从Boosting集成学习思想,通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器 ,然后通过加权投票等方式将这些弱学习器集成起来得到性能较优的集成模型。

图1:Boosting集成算法思想。

下面以二分类任务(标签不是为-1,就是为+1)为例介绍该算法的具体过程。值得注意的是,下面的公式推导是以二分类任务下得出来,所以公式(比如样本权重更新公式)才会显得比较整洁,但如果换成其他任务,如多分类,那么公式会复杂很多。

对于训练样本集 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , ... , ( x n , y n ) D={\left(x_1,y_1\right),\left(x_2,y_2\right),\ldots,(x_n,y_n)} D=(x1,y1),(x2,y2),...,(xn,yn),其中标签 y i ∈ { − 1 , + 1 } y_i\in\left\{-1,+1\right\} yi∈{−1,+1},由AdaBoost集成学习算法构造集成模型的基本步骤如下:

(1)令 i = 1 i=1 i=1并设定弱学习器的数目m 。对应第一次迭代 ,使用均匀分布 初始化训练样本集的权重分布,令 n n n维向量 w i \mathbf{w}^i wi表示第 i i i次需更新的样本权重,则有:
w 1 = ( w 11 , w 12 , ... , w 1 n ) T = ( 1 n , 1 n , ... , 1 n ) T \mathbf{w}^1=\left(w_{11},w_{12},\ldots,w_{1n}\right)^T=\left(\frac{1}{n},\frac{1}{n},\ldots,\frac{1}{n}\right)^T w1=(w11,w12,...,w1n)T=(n1,n1,...,n1)T

(2)使用权重分布为 w i \mathbf{w}^i wi,此时 i = 1 i=1 i=1的训练样本集 D i D_i Di学习得到第 i i i个弱学习器 L i L_i Li;

(3)计算 L i L_i Li在训练样本集 D i D_i Di上的分类错误率 e i e_i ei:
e i = ∑ k = 1 n w i k I ( L i ( X k ) ≠ y k ) e_i=\sum_{k=1}^{n}{w_{ik}I \left(L_i\left(X_k\right)\neq y_k\right) } ei=∑k=1nwikI(Li(Xk)=yk)

(4)确定弱学习器 L i L_i Li的组合权重 α i \alpha_i αi( α i \alpha_i αi在最后得到最终的集成模型上用到)。由于弱学习器 L i L_i Li的权重取值应与其分类性能相关,对于分类错误率 e i e_i ei越小的 L i L_i Li,则其权重 α i \alpha_i αi应该越大,故有:
α i = 1 2 ln 1 − e i e i = 1 2 ln ( 1 e i − 1 ) \alpha_i=\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}=\frac{1}{2}\text{ln}(\frac{1}{e_i}-1) αi=21lnei1−ei=21ln(ei1−1)

可能会有人会为,为什么要这么设计 α i \alpha_i αi?我在下面给出了解释。

(5)(重点 )依据弱学习器 L i L_i Li对训练样本集 D i D_i Di的分类错误率 e i e_i ei更新样本权重,样本权重更新公式为:
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(−αiykLi(xk))

其中:
Z i = ∑ k = 1 n w i j exp ⁡ ( − α i y k L i ( X k ) ) Z_i=\sum_{k=1}^{n}{w_{ij}\exp(-\alpha_iy_kL_i(X_k))} Zi=∑k=1nwijexp(−αiykLi(Xk))

为归一化因子,保证更新后权重向量为概率分布;
对权重更新公式的解释

回顾开头,这是一个二分类任务,所以若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类正确,则要不 y k = L i ( x k ) = 1 y_k=L_i(x_k)=1 yk=Li(xk)=1**,要不** y k = L i ( x k ) = − 1 y_k=L_i(x_k)=-1 yk=Li(xk)=−1**,因此有** y k ∗ L i ( x k ) = 1 y_k*L_i(x_k)=1 yk∗Li(xk)=1**。**若样本 ( x k , y k ) (x_k,y_k) (xk,yk)分类错误,则要不 y k = − 1 , L i ( x k ) = 1 y_k=-1,L_i(x_k)=1 yk=−1,Li(xk)=1,要不 y k = 1 , L i ( x k ) = − 1 y_k=1,L_i(x_k)=-1 yk=1,Li(xk)=−1,因此有 y k ∗ L i ( x k ) = − 1 y_k*L_i(x_k)=-1 yk∗Li(xk)=−1。

因此公式
w i + 1 , j = w i j exp ⁡ ( − α i y k L i ( x k ) ) Z i w_{i+1,j}=\frac{w_{ij}\exp(-\alpha_iy_kL_i(x_k))}{Z_i} wi+1,j=Ziwijexp(−αiykLi(xk))

可以改写
w i + 1 , j = { w i j Z i exp ⁡ ( − α i ) , y k = L i ( x k ) w i j Z i exp ⁡ ( α i ) , y k ≠ L i ( x k ) w_{i+1,j}=\begin{cases} \frac{w_{ij}}{Z_i}\exp(-\alpha_i),y_k=L_i(x_k) \\\frac{w_{ij}}{Z_i}\exp(\alpha_i),y_k\ne L_i(x_k) \end{cases} wi+1,j={Ziwijexp(−αi),yk=Li(xk)Ziwijexp(αi),yk=Li(xk)

这样,对于错误的样本会被放大 1 − e i e i \frac{1-e_i}{e_i} ei1−ei倍,以便在后续弱学习器构造过程得到应有的重视。
为什么是 1 − e i e i \frac{1-e_i}{e_i} ei1−ei倍?
w i + 1 , j , y k ≠ L i ( x k ) w i + 1 , j , y k = L i ( x k ) = w i j Z i exp ⁡ ( α i ) w i j Z i exp ⁡ ( − α i ) = exp ⁡ ( α i ) exp ⁡ ( − α i ) = e 2 ∗ α i = e 2 ∗ 1 2 ln 1 − e i e i = e ln 1 − e i e i = 1 − e i e i \frac{w_{i+1,j},y_k\ne L_i(x_k)}{w_{i+1,j},y_k=L_i(x_k)}=\frac{\frac{w_{ij}}{Z_i}\exp(\alpha_i)}{\frac{w_{ij}}{Z_i}\exp(-\alpha_i)} =\frac{\exp(\alpha_i)}{\exp(-\alpha_i)}=e^{2*\alpha_i}=e^{2*\frac{1}{2}\text{ln}\frac{1-e_i}{e_i}}=e^{\text{ln}\frac{1-e_i}{e_i}}=\frac{1-e_i}{e_i} wi+1,j,yk=Li(xk)wi+1,j,yk=Li(xk)=Ziwijexp(−αi)Ziwijexp(αi)=exp(−αi)exp(αi)=e2∗αi=e2∗21lnei1−ei=elnei1−ei=ei1−ei

另外 Z i Z_i Zi的作用是归一化,使得 ∑ j = 1 n w i + 1 , j = 1 \sum_{j=1}^{n}{w_{i+1,j}}=1 ∑j=1nwi+1,j=1

(6)若 i < m i<m i<m,则令 i = i + 1 i=i+1 i=i+1并返回步骤(2),否则执行步骤(7);

(7)对于 m m m个弱分类器 L 1 , L 2 , ... , L m L_1{,L}2,\ldots,L_m L1,L2,...,Lm,分别将每个 L i L_i Li按权重 α i \alpha_i αi进行组合:
L = sign ( ∑ i = 1 m α i L i ( X ) ) L=\text{sign}(\sum
{i=1}^{m}{\alpha_iL_i(X)}) L=sign(∑i=1mαiLi(X))

得到并输出所求集成模型 L L L,算法结束。

参考资料:《机器学习及其应用》汪荣贵等编著

相关推荐
阿坡RPA10 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499310 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心10 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI12 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c13 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20513 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清13 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh14 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员14 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物14 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技