R语言进行集成学习算法:随机森林

R 复制代码
# 10.4 集成学习及随机森林
# 导入car数据集
car <- read.table("data/car.data",sep = ",")
# 对变量重命名
colnames(car) <- c("buy","main","doors","capacity",
                   "lug_boot","safety","accept")
# 随机选取75%的数据作为训练集建立模型,25%的数据作为测试集用来验证模型
library(caret)
library(ggplot2)
library(lattice)
# 构建训练集的下标集
ind <- createDataPartition(car$accept,times=1,p=0.75,list=FALSE) 
# 构建测试集数据好训练集数据
carTR <- car[ind,]
carTE <- car[-ind,]
carTR<- within(carTR,accept <- factor(accept,levels=c("unacc","acc","good","vgood")))
carTE<- within(carTE,accept <- factor(accept,levels=c("unacc","acc","good","vgood")))


# 使用adabag包中的bagging函数实现bagging算法
#install.packages("adabag")
library(adabag)
bagging.model <- bagging(accept~.,data=carTR)

# 使用adabag包中的boosting函数实现boosting算法
boosting.model <- boosting(accept~.,data=carTR)

# 使用randomForest包中的randomForest函数实现随机森林算法
#install.packages("randomForest")
library(randomForest)
randomForest.model <- randomForest(accept~.,data=carTR,ntree=500,mtry=3)

# 预测结果,并构建混淆矩阵,查看准确率
# 构建result,存放预测结果
result <- data.frame(arithmetic=c("bagging","boosting","随机森林"),
                     errTR=rep(0,3),errTE=rep(0,3))
for(i in 1:3){
  # 预测结果
  carTR_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model),
                           newdata=carTR) # 训练集数据
  carTE_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model),
                           newdata=carTE) # 测试集数据
  # 构建混淆矩阵
  tableTR <- table(actual=carTR$accept,
                   predict=switch(i,carTR_predict$class,carTR_predict$class,carTR_predict))
  tableTE <- table(actual=carTE$accept,
                   predict=switch(i,carTE_predict$class,carTE_predict$class,carTE_predict))
  # 计算误差率
  result[i,2] <- paste0(round((sum(tableTR)-sum(diag(tableTR)))*100/sum(tableTR),
                              2),"%")
  result[i,3] <- paste0(round((sum(tableTE)-sum(diag(tableTE)))*100/sum(tableTE),
                              2),"%")
}
# 查看结果
result
相关推荐
小O的算法实验室36 分钟前
2025年TRE SCI1区TOP,随机环境下无人机应急医疗接送与配送的先进混合方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小白程序员成长日记1 小时前
2025.11.06 力扣每日一题
算法·leetcode
暴风鱼划水1 小时前
算法题(Python)数组篇 | 4.长度最小的子数组
python·算法·力扣
gugugu.1 小时前
算法:二分算法类型题目总结---(含二分模版)
算法
大G的笔记本1 小时前
算法篇常见面试题清单
java·算法·排序算法
7澄12 小时前
深入解析 LeetCode 数组经典问题:删除每行中的最大值与找出峰值
java·开发语言·算法·leetcode·intellij idea
AI科技星2 小时前
宇宙的几何诗篇:当空间本身成为运动的主角
数据结构·人工智能·经验分享·算法·计算机视觉
前端小L2 小时前
二分查找专题(二):lower_bound 的首秀——精解「搜索插入位置」
数据结构·算法
老黄编程3 小时前
三维空间圆柱方程
算法·几何
xier_ran3 小时前
关键词解释:DAG 系统(Directed Acyclic Graph,有向无环图)
python·算法