Flink实时开发添加水印的案例分析

在Flink中,处理时间序列数据时,通常需要考虑事件时间和水印(watermarks)的处理。以下是修改前后的代码对比分析:

修改前的代码:

复制代码
val systemDS = unitDS.map(dp => {
  dp.setDeviceCode(DeviceCodeEnum.fromPidToSystem(dp.getDeviceCode))
  dp
}).keyBy(_.getDeviceCode)
.window(TumblingEventTimeWindows.of(Time.seconds(60)))
.process(new MySystemWinF)
  1. unitDS 经过一个 map 操作,将每个元素的 deviceCode 转换为系统设备码。
  2. 使用 keyBy(_.getDeviceCode) 对转换后的设备码进行分组。
  3. 定义了一个基于事件时间的滚动窗口,窗口大小为60秒。
  4. 使用 process 操作应用自定义的窗口函数 HPageSystemWinF 来处理每个窗口中的数据。

注意:修改前的代码没有显示地处理水印(watermarks),这可能导致在处理乱序数据或延迟数据时出现问题。

修改后的代码:

复制代码
val systemDS = unitDS.map(dp => {
  dp.setDeviceCode(DeviceCodeEnum.fromPidToSystem(dp.getDeviceCode))
  dp
}).keyBy(_.getDeviceCode)
.assignTimestampsAndWatermarks(
  WatermarkStrategy
    .<boundedOutOfOrdernessDaysPower>forBoundedOutOfOrderness(Duration.ofSeconds(5)) // 假设这里应该是.forBoundedOutOfOrderness而不是.forBoundedOutOfOrdernessDaysPower
    .withIdleness(Duration.ofSeconds(5))
    .withTimestampAssigner(new SerializableTimestampAssigner[DaysPower] {
      override def extractTimestamp(element: DaysPower, recordTimestamp: Long): Long = {
        Math.max(element.getEventTime, recordTimestamp)
      }
    })
).keyBy(_.getDeviceCode)
.window(TumblingEventTimeWindows.of(Time.seconds(60)))
.process(new MySystemWinF)
  1. 与修改前相同的部分:map, keyBy, 和 window 操作。
  2. 添加了 assignTimestampsAndWatermarks 方法来处理事件时间和水印:
    • 使用 WatermarkStrategy.forBoundedOutOfOrderness 允许一定程度的乱序数据(这里是5秒)。
    • .withIdleness(Duration.ofSeconds(5)) 设置了空闲超时时间为5秒,用于处理不活跃的键。
    • 使用 withTimestampAssigner 自定义了时间戳分配器,确保使用的事件时间是元素中的 eventTime 和记录的 recordTimestamp 中的较大值。

不同点和适用场景:

  • 事件时间和水印处理:修改后的代码显式地处理了事件时间和水印,这对于处理乱序数据、延迟数据以及确保正确的时间窗口计算是非常重要的。如果您的数据流中存在乱序或延迟数据,或者您希望更严格地保证处理时间窗口的正确性,那么应该使用修改后的代码。
  • 空闲超时:通过设置空闲超时,可以处理那些长时间不活跃的键,避免因为某些键长时间没有新数据而导致整个程序挂起。
  • 延迟数据处理 :如果数据有可能晚到,但仍然需要被纳入正确的窗口进行计算,水印可以帮助界定数据的"迟到"界限。
    精确的时间窗口分析:对于需要基于事件实际发生时间而非数据处理时间进行分析的场景,如实时监控、金融交易分析等,事件时间模型是必须的。
相关推荐
再__努力1点8 分钟前
【76】Haar特征的Adaboost级联人脸检测全解析及python实现
开发语言·图像处理·人工智能·python·算法·计算机视觉·人脸检测
溟洵8 分钟前
【算法C++】链表(题目列表:两数相加、两两交换链表中的节点、重排链表、合并 K 个升序链表、K 个一组翻转链表7)
数据结构·c++·算法·链表
IT·小灰灰8 分钟前
AI算力租赁完全指南(一):选卡篇——从入门到精通的GPU选购
大数据·人工智能·数据分析·云计算·音视频·gpu算力
_OP_CHEN8 分钟前
【C++数据结构进阶】玩转并查集:从原理到实战,C++ 实现与高频面试题全解析
数据结构·c++·算法
gugugu.9 分钟前
算法:hot100---128. 最长连续序列
算法
XianjianAI12 分钟前
先见AI新功能深度介绍:以可信AI重构研报解读,数据驱动决策快人一步
大数据·人工智能·信息可视化·数据分析·需求分析
毕设源码-邱学长13 分钟前
【开题答辩全过程】以 基于大数据技术的医疗数据管理系统为例,包含答辩的问题和答案
大数据
天呐草莓14 分钟前
支持向量机(SVM)
人工智能·python·算法·机器学习·支持向量机·数据挖掘·数据分析
qq_3482318515 分钟前
市场快评 · 今日复盘要点20251219
大数据
行业探路者19 分钟前
网站二维码的全解析与使用技巧分享
大数据·人工智能·学习·产品运营·软件工程