Flink实时开发添加水印的案例分析

在Flink中,处理时间序列数据时,通常需要考虑事件时间和水印(watermarks)的处理。以下是修改前后的代码对比分析:

修改前的代码:

val systemDS = unitDS.map(dp => {
  dp.setDeviceCode(DeviceCodeEnum.fromPidToSystem(dp.getDeviceCode))
  dp
}).keyBy(_.getDeviceCode)
.window(TumblingEventTimeWindows.of(Time.seconds(60)))
.process(new MySystemWinF)
  1. unitDS 经过一个 map 操作,将每个元素的 deviceCode 转换为系统设备码。
  2. 使用 keyBy(_.getDeviceCode) 对转换后的设备码进行分组。
  3. 定义了一个基于事件时间的滚动窗口,窗口大小为60秒。
  4. 使用 process 操作应用自定义的窗口函数 HPageSystemWinF 来处理每个窗口中的数据。

注意:修改前的代码没有显示地处理水印(watermarks),这可能导致在处理乱序数据或延迟数据时出现问题。

修改后的代码:

val systemDS = unitDS.map(dp => {
  dp.setDeviceCode(DeviceCodeEnum.fromPidToSystem(dp.getDeviceCode))
  dp
}).keyBy(_.getDeviceCode)
.assignTimestampsAndWatermarks(
  WatermarkStrategy
    .<boundedOutOfOrdernessDaysPower>forBoundedOutOfOrderness(Duration.ofSeconds(5)) // 假设这里应该是.forBoundedOutOfOrderness而不是.forBoundedOutOfOrdernessDaysPower
    .withIdleness(Duration.ofSeconds(5))
    .withTimestampAssigner(new SerializableTimestampAssigner[DaysPower] {
      override def extractTimestamp(element: DaysPower, recordTimestamp: Long): Long = {
        Math.max(element.getEventTime, recordTimestamp)
      }
    })
).keyBy(_.getDeviceCode)
.window(TumblingEventTimeWindows.of(Time.seconds(60)))
.process(new MySystemWinF)
  1. 与修改前相同的部分:map, keyBy, 和 window 操作。
  2. 添加了 assignTimestampsAndWatermarks 方法来处理事件时间和水印:
    • 使用 WatermarkStrategy.forBoundedOutOfOrderness 允许一定程度的乱序数据(这里是5秒)。
    • .withIdleness(Duration.ofSeconds(5)) 设置了空闲超时时间为5秒,用于处理不活跃的键。
    • 使用 withTimestampAssigner 自定义了时间戳分配器,确保使用的事件时间是元素中的 eventTime 和记录的 recordTimestamp 中的较大值。

不同点和适用场景:

  • 事件时间和水印处理:修改后的代码显式地处理了事件时间和水印,这对于处理乱序数据、延迟数据以及确保正确的时间窗口计算是非常重要的。如果您的数据流中存在乱序或延迟数据,或者您希望更严格地保证处理时间窗口的正确性,那么应该使用修改后的代码。
  • 空闲超时:通过设置空闲超时,可以处理那些长时间不活跃的键,避免因为某些键长时间没有新数据而导致整个程序挂起。
  • 延迟数据处理 :如果数据有可能晚到,但仍然需要被纳入正确的窗口进行计算,水印可以帮助界定数据的"迟到"界限。
    精确的时间窗口分析:对于需要基于事件实际发生时间而非数据处理时间进行分析的场景,如实时监控、金融交易分析等,事件时间模型是必须的。
相关推荐
盼海13 分钟前
排序算法(五)--归并排序
数据结构·算法·排序算法
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
zhixingheyi_tian4 小时前
Spark 之 Aggregate
大数据·分布式·spark
PersistJiao4 小时前
Spark 分布式计算中网络传输和序列化的关系(一)
大数据·网络·spark
宅小海7 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白7 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋7 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
Swift社区7 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
宝哥大数据8 小时前
Flink Joins
flink
Kent_J_Truman8 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法