论文阅读【时空+大模型】ST-LLM(MDM2024)

论文阅读【时空+大模型】ST-LLM(MDM2024)

论文链接:Spatial-Temporal Large Language Model for Traffic Prediction

代码仓库:https://github.com/ChenxiLiu-HNU/ST-LLM

发表于MDM2024(Mobile Data Management)

本文主要面向交通流量 数据。

符号定义

符号 含义
N 交通站点数
C 特征数量
P 历史序列长度
S 预测序列长度

Spatial-Temporal Embedding and Fusion

注: X P ∈ R P ∗ N ∗ C X_P \isin R^{P*N*C} XP∈RP∗N∗C,但在本文实验中C=1(原文"C = 1 represents the traffic pick-up or drop-off flow"),因而有 X P ∈ R P ∗ N X_P \isin R^{P*N} XP∈RP∗N

一般而言,spatial-temporal embedding分为:

  • Token Embedding: E P = P o i n t w i s e C o n v ( X P ) ∈ R N ∗ D E_P = PointwiseConv(X_P) \isin R^{N * D} EP=PointwiseConv(XP)∈RN∗D
  • Temporal Embedding: E T = E T d + E T w = W d a y ( X d a y ) + W w e e k ( X w e e k ) ∈ R N ∗ D E_T = E_T^d+E_T^w = W_{day}(X_{day}) + W_{week}(X_{week})\isin R^{N *D} ET=ETd+ETw=Wday(Xday)+Wweek(Xweek)∈RN∗D
  • Spatial Embedding: E S = σ ( W S ∗ X P + b S ) ∈ R N ∗ D E_S = \sigma (W_S * X_P + b_S) \isin R^{N * D} ES=σ(WS∗XP+bS)∈RN∗D

然后将三种embedding合并:

H F = F u s i o n C o n v ( E P ∣ ∣ E S ∣ ∣ E T ) ∈ R N ∗ 3 D H_F = FusionConv(E_P||E_S||E_T) \isin R^{N*3D} HF=FusionConv(EP∣∣ES∣∣ET)∈RN∗3D

其中'||'是拼接符号。

Partially Frozen Attention (PFA) LLM

这部分使用GPT2捕获时空依赖。Transformer Block中训练时空开销最大的是注意力(Attention)模块。本文使用了F+U个Transformer层:

  • 在前F层中,Attention参数冷冻,只训练Layer Norm
  • 在后U层中,Attention参数也用于训练
    经过F+U个Transformer层后,得到的 H F + U H^{F+U} HF+U后,使用一个Regression Conv获得最终结果:
    Y S = R e g r e s s i o n C o n v ( H F + U ) ∈ R S ∗ N . Y_S = RegressionConv(H^{F+U}) \isin R^{S*N}. YS=RegressionConv(HF+U)∈RS∗N.

实验

交通预测

从这个实验结果来看,看起来很多后来的方法都比不上DCRNN???

效率

小样本/零样本(大模型必备)

相关推荐
中冕—霍格沃兹软件开发测试4 分钟前
探索性测试:思维驱动下的高效缺陷狩猎
人工智能·科技·开源·appium·bug
cnfalcon5 分钟前
ESP-IDF AI硬件开发技术问题记录
人工智能·esp-idf
陈佬昔没带相机6 分钟前
从罗永浩 x MiniMax 闫俊杰对谈中,一窥 AI 时代软件公司岗位变化
人工智能·程序员·敏捷开发
老马啸西风7 分钟前
成熟企业级技术平台-09-加密机 / 密钥管理服务 KMSS(Key Management & Security Service)
人工智能·深度学习·算法·职场和发展
2301_801821719 分钟前
前期工作总结
人工智能
Ulana27 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199029 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄30 分钟前
【LORA】
人工智能
Jerryhut43 分钟前
Bev感知特征空间算法
人工智能
xian_wwq1 小时前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电