论文阅读【时空+大模型】ST-LLM(MDM2024)

论文阅读【时空+大模型】ST-LLM(MDM2024)

论文链接:Spatial-Temporal Large Language Model for Traffic Prediction

代码仓库:https://github.com/ChenxiLiu-HNU/ST-LLM

发表于MDM2024(Mobile Data Management)

本文主要面向交通流量 数据。

符号定义

符号 含义
N 交通站点数
C 特征数量
P 历史序列长度
S 预测序列长度

Spatial-Temporal Embedding and Fusion

注: X P ∈ R P ∗ N ∗ C X_P \isin R^{P*N*C} XP∈RP∗N∗C,但在本文实验中C=1(原文"C = 1 represents the traffic pick-up or drop-off flow"),因而有 X P ∈ R P ∗ N X_P \isin R^{P*N} XP∈RP∗N

一般而言,spatial-temporal embedding分为:

  • Token Embedding: E P = P o i n t w i s e C o n v ( X P ) ∈ R N ∗ D E_P = PointwiseConv(X_P) \isin R^{N * D} EP=PointwiseConv(XP)∈RN∗D
  • Temporal Embedding: E T = E T d + E T w = W d a y ( X d a y ) + W w e e k ( X w e e k ) ∈ R N ∗ D E_T = E_T^d+E_T^w = W_{day}(X_{day}) + W_{week}(X_{week})\isin R^{N *D} ET=ETd+ETw=Wday(Xday)+Wweek(Xweek)∈RN∗D
  • Spatial Embedding: E S = σ ( W S ∗ X P + b S ) ∈ R N ∗ D E_S = \sigma (W_S * X_P + b_S) \isin R^{N * D} ES=σ(WS∗XP+bS)∈RN∗D

然后将三种embedding合并:

H F = F u s i o n C o n v ( E P ∣ ∣ E S ∣ ∣ E T ) ∈ R N ∗ 3 D H_F = FusionConv(E_P||E_S||E_T) \isin R^{N*3D} HF=FusionConv(EP∣∣ES∣∣ET)∈RN∗3D

其中'||'是拼接符号。

Partially Frozen Attention (PFA) LLM

这部分使用GPT2捕获时空依赖。Transformer Block中训练时空开销最大的是注意力(Attention)模块。本文使用了F+U个Transformer层:

  • 在前F层中,Attention参数冷冻,只训练Layer Norm
  • 在后U层中,Attention参数也用于训练
    经过F+U个Transformer层后,得到的 H F + U H^{F+U} HF+U后,使用一个Regression Conv获得最终结果:
    Y S = R e g r e s s i o n C o n v ( H F + U ) ∈ R S ∗ N . Y_S = RegressionConv(H^{F+U}) \isin R^{S*N}. YS=RegressionConv(HF+U)∈RS∗N.

实验

交通预测

从这个实验结果来看,看起来很多后来的方法都比不上DCRNN???

效率

小样本/零样本(大模型必备)

相关推荐
Java中文社群4 分钟前
Dify实战案例:MySQL查询助手!嘎嘎好用
java·人工智能·后端
MYH5165 分钟前
拉力测试cuda pytorch 把 4070显卡拉满
人工智能·pytorch·python
某人辛木10 分钟前
基于tensorflow实现的猫狗识别
人工智能·python·tensorflow
大白爱琴13 分钟前
使用python进行图像处理—图像变换(6)
图像处理·人工智能·python
楽码29 分钟前
AI信息论:处理繁杂问题
人工智能·openai·trae
技术便签32 分钟前
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
人工智能·python·ai编程·agi·多智能体·智能体·adk
love530love1 小时前
教程:PyCharm 中搭建多级隔离的 Poetry 环境(从 Anaconda 到项目专属.venv)
开发语言·ide·人工智能·windows·python·pycharm
聚客AI1 小时前
PyTorch进阶:从自定义损失函数到生产部署全栈指南
人工智能·pytorch·深度学习
Apache RocketMQ1 小时前
RocketMQ 客户端负载均衡机制详解及最佳实践
人工智能
可爱美少女1 小时前
Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)
人工智能·分类·数据挖掘