算法刷题笔记 堆排序(C++实现,包含对堆数据结构的介绍)

文章目录

题目描述

  • 输入一个长度为n的整数数列,从小到大输出前m小的数。

输入格式

  • 第一行包含整数nm
  • 第二行包含n个整数,表示整数数列。

输出格式

  • 共一行,包含m个整数,表示整数数列中前m小的数。

数据范围

  • 1 ≤ m ≤ n ≤ 105
  • 1 ≤ 数列中元素 ≤ 109

基本思路(堆的介绍)

  • 堆支持的操作
    • 向堆中插入一个数据;
    • 求堆中最小的数据;
    • 删除堆中最小的数据;
    • 删除堆中的任意一个元素;
    • 修改堆中的任意一个元素。

前三者是堆的最基本的操作,也是C++的STL中所支持的三种堆操作。

  • 堆的基本结构:堆是一棵二叉树,并且是完全二叉树,也就是除了叶子结点之外,所有的结点都有且仅有两个子结点,且子结点是从左到右依次排列的。
  • 小根堆的概念:堆中每一个结点的左右子结点的值都大于等于根结点的值。
  • 堆的存储
    • 采用一个一维数组来存储堆,第一个结点为根节点。对于堆中的任意一个结点x,其左子结点为2x,右子结点为2x+1
    • 堆的下标一般从1开始,防止2xx指向同一个结点。
  • 堆的基本操作 :这两个操作的时间复杂度都与二叉树的树高成正比,即O(logn)
    • down(x):向下调整某个结点。在小根堆中,某个结点的值增大后,首先交换该结点的值与其左右子结点中较小的值,然后继续和下一层的左右子结点的值进行比较,直到无法继续交换,得到一个合理的小根堆。
    • up(x):向上调整某个结点。与down操作的过程是反过来的。
  • 堆操作的实现
    • 堆的插入 :首先在堆的最后一个位置(叶子结点)插入该数据,然后不断将该数据上移(up操作)。
    • 求堆的最小值:小根堆数组的第一个元素即堆的最小值。
    • 删除堆的最小值 :用堆的最后一个元素覆盖堆的第一个元素,然后一直down操作,直到得到一个合理的小根堆。
    • 删除堆中的任意一个元素 :用堆的最大元素覆盖该元素,然后先做down再做up即可。
    • 修改堆中的任意一个元素 :直接进行设置后,再down一遍up一遍。
  • 堆排序的基本思路:将整个数组建成一个堆,然后每次将堆顶输出出来,并将其删除。
  • 数组建堆的方式for(int i = n / 2; i > 0; -- i) down(i);

实现代码

cpp 复制代码
#include <cstdio>
#include <algorithm>
using namespace std;

int n, m;
const int N = 100010;
int heap[N];

// 将堆中的某个结点的值向下移动
void down(int i)
{
    // 首先找出三个结点中的最小值
    int swap_position = i;
    // 如果左儿子结点存在且值比当前存储局部最小值的结点的值更小,则将局部最小值更新为左儿子
    if(2 * i <= n && heap[swap_position] > heap[2 * i]) swap_position = 2 * i;
    // 如果右儿子结点存在且值比当前存储局部最小值的结点的值更小,则将局部最小值更新为右儿子
    if(2 * i + 1 <= n && heap[swap_position] > heap[2 * i + 1]) swap_position = 2 * i + 1;
    // 如果当前结点存在某个子结点的值更小,则使用algorithm头文件中的swap函数交换两个结点的值,相当于下移
    if(swap_position != i)
    {
        swap(heap[swap_position], heap[i]);
        // 递归地继续向下移动
        down(swap_position);
    }
}

int main(void)
{
    // 输入部分(需要注意堆的下标一般从1开始)
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++ i) scanf("%d", &heap[i]);
    // 堆的初始化部分(固定套路)
    for(int i = n / 2; i > 0; -- i) down(i);
    // 每次从堆中取出堆顶,输出后删除
    for(int i = 1; i <= m; ++ i)
    {
        printf("%d ", heap[1]);
        // 用当前的堆底元素覆盖堆顶元素,然后下移
        heap[1] = heap[n];
        -- n;
        down(1);
    }
    return 0;
}

注意事项

  • 堆排序的难点就在于建堆的过程,后续的排序过程只需要按照顺序输出即可,非常简单。
相关推荐
Uu_05kkq2 分钟前
【C语言1】C语言常见概念(总结复习篇)——库函数、ASCII码、转义字符
c语言·数据结构·算法
清梦20201 小时前
经典问题---跳跃游戏II(贪心算法)
算法·游戏·贪心算法
Dream_Snowar2 小时前
速通Python 第四节——函数
开发语言·python·算法
1nullptr2 小时前
三次翻转实现数组元素的旋转
数据结构
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
TT哇2 小时前
【数据结构练习题】链表与LinkedList
java·数据结构·链表
A懿轩A2 小时前
C/C++ 数据结构与算法【栈和队列】 栈+队列详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·栈和队列
Python机器学习AI2 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
Hejjon3 小时前
SpringBoot 整合 SQLite 数据库
笔记
吕小明么3 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi