71、Flink 的 Hybrid Source 详解

Hybrid Source
1.概述

Hybrid Source 解决了从异构数据源顺序读取输入以生成单个输入流的问题。

示例:从 S3 读取前几天的有界输入,然后使用 Kafka 的最新无界输入,当有界文件输入完成而不中断应用程序时 Hybrid Source 会从 FileSource 切换到 KafkaSource。

在 Hybrid Source 出现之前,需要创建一个具有多个源的拓扑结构,并由用户定义切换机制;使用 HybridSource 之后,从 DataStream API 的角度看,多个源在 Flink 作业图中显示为单个源。

需要依赖如下:

复制代码
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-base</artifactId>
    <version>1.19.0</version>
</dependency>
2.下一个源的起始位置

要在一个 Hybrid Source 中排列多个源,除最后一个源外的所有源都需要有界;因此通常需要为源分配一个开始和结束位置。

a)固定起始位置

示例:从文件中读取到预先确定的切换时间,然后继续从 Kafka 中读取,每个源都覆盖了预先已知的范围,可以像直接使用一样预先创建包含的源。

复制代码
long switchTimestamp = ...; // derive from file input paths

FileSource<String> fileSource =
  FileSource.forRecordStreamFormat(new TextLineInputFormat(), Path.fromLocalFile(testDir)).build();

KafkaSource<String> kafkaSource =
          KafkaSource.<String>builder()
                  .setStartingOffsets(OffsetsInitializer.timestamp(switchTimestamp + 1))
                  .build();

HybridSource<String> hybridSource =
          HybridSource.builder(fileSource)
                  .addSource(kafkaSource)
                  .build();
b)动态其实位置

示例:文件源需要读取的数据量很大,可能比下一个源可用的保留时间更长,切换需要在 "当前时间-X" 发生。

因此要将下一个源的启动时间设置为切换时间,需要从以前的文件枚举器中转移结束位置,以便通过实现 SourceFactory 来延迟构建KafkaSource。

注意:枚举器需要支持获取结束时间戳。

复制代码
FileSource<String> fileSource = CustomFileSource.readTillOneDayFromLatest();

HybridSource<String> hybridSource =
    HybridSource.<String, CustomFileSplitEnumerator>builder(fileSource)
        .addSource(
            switchContext -> {
              CustomFileSplitEnumerator previousEnumerator =
                  switchContext.getPreviousEnumerator();
              
              // how to get timestamp depends on specific enumerator
              long switchTimestamp = previousEnumerator.getEndTimestamp();
              
              KafkaSource<String> kafkaSource =
                  KafkaSource.<String>builder()
                      .setStartingOffsets(OffsetsInitializer.timestamp(switchTimestamp + 1))
                      .build();
              
              return kafkaSource;
            },
            Boundedness.CONTINUOUS_UNBOUNDED)
        .build();
相关推荐
TracyCoder1231 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎
cd_949217213 小时前
九昆仑低碳科技:所罗门群岛全国森林碳汇项目开发合作白皮书
大数据·人工智能·科技
Acrelhuang3 小时前
工商业用电成本高?安科瑞液冷储能一体机一站式解供能难题-安科瑞黄安南
大数据·开发语言·人工智能·物联网·安全
小王毕业啦3 小时前
2010-2024年 非常规高技能劳动力(+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
言無咎3 小时前
从规则引擎到任务规划:AI Agent 重构跨境财税复杂账务处理体系
大数据·人工智能·python·重构
私域合规研究4 小时前
【AI应用】AI与大数据融合:中国品牌出海获客的下一代核心引擎
大数据·海外获客
TDengine (老段)4 小时前
金融风控系统中的实时数据库技术实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
MMME~5 小时前
Ansible模块速查指南:高效定位与实战技巧
大数据·运维·数据库
计算机毕业编程指导师5 小时前
大数据可视化毕设:Hadoop+Spark交通分析系统从零到上线 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·城市交通
计算机毕业编程指导师5 小时前
【计算机毕设选题】基于Spark的车辆排放分析:2026年热门大数据项目 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·车辆排放