【DGL系列】DGLGraph.out_edges简介

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~


目录

函数说明

用法示例

[示例 1: 获取所有边的源节点和目标节点](#示例 1: 获取所有边的源节点和目标节点)

[示例 2: 获取特定节点的出边](#示例 2: 获取特定节点的出边)

[示例 3: 获取所有边的边ID](#示例 3: 获取所有边的边ID)

[示例 4: 获取所有信息(源节点、目标节点和边ID)](#示例 4: 获取所有信息(源节点、目标节点和边ID))

[示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型](#示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型)

[示例 6:对于无向图,则边是双向的](#示例 6:对于无向图,则边是双向的)


dgl.DGLGraph.out_edges --- DGL 2.3 documentation

函数说明

dgl.DGLGraph.out_edges 是 DGL(Deep Graph Library)中的一个方法,用于获取图中所有边的源节点和目标节点。这个方法可以用于返回整个图的边,也可以通过传入指定的节点来获取从这些节点出发的边。

python 复制代码
DGLGraph.out_edges(u=ALL, etype=None, form='uv')

参数

  • u(节点ID):

    • 可以是 单个节点ID(整数)。
    • 可以是 节点ID的张量(Int Tensor),每个元素是一个节点ID。张量的设备类型和ID数据类型必须与图的相同。
    • 可以是 可迭代的节点ID列表(iterable[int]),每个元素是一个节点ID。
  • form(字符串,可选):

    • 'eid': 返回1D张量,表示所有边的ID。
    • 'uv'(默认): 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。
  • etype(字符串或(字符串, 字符串, 字符串),可选):

    • 边的类型名称。格式可以是 (源节点类型, 边类型, 目标节点类型)。
    • 或者是一个唯一标识三元组格式的字符串类型名称。如果图中只有一种类型的边,可以省略。

返回值

  • 返回所有指定类型节点的出边。返回形式取决于 form 参数的值。
    • 'eid': 返回一个1D张量,表示所有边的ID。
    • 'uv': 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。

用法示例

我们创建一个如图所示的简单的graph:

**示例 1:**获取所有边的源节点和目标节点

python 复制代码
import dgl
import torch

# 创建一个简单的图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])
graph = dgl.graph((u, v))

# 获取所有边的源节点和目标节点
src, dst = graph.out_edges(graph.nodes())

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])

**示例 2:**获取特定节点的出边

python 复制代码
# 获取节点0和节点1的出边
nodes = torch.tensor([0, 1])
src, dst = graph.out_edges(nodes)

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([0, 0, 1])
# 目标节点: tensor([1, 2, 3])

示例 3: 获取所有边的边ID

python 复制代码
# 获取所有边的边ID
edge_ids = graph.out_edges(graph.nodes(), form='eid')

print("边ID:", edge_ids)

# 边ID: tensor([0, 1, 2, 3])

**示例 4:**获取所有信息(源节点、目标节点和边ID)

python 复制代码
# 获取所有边的源节点、目标节点和边ID
src, dst, eid = graph.out_edges(graph.nodes(), form='all')

print("源节点:", src)
print("目标节点:", dst)
print("边ID:", eid)

# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])
# 边ID: tensor([0, 1, 2, 3])

**示例 5:**对于有多种边缘类型的图形,需要在查询中指定边的类型

python 复制代码
hg = dgl.heterograph({
    ('user', 'follows', 'user'): (torch.tensor([0, 1]), torch.tensor([1, 2])),
    ('user', 'plays', 'game'): (torch.tensor([3, 4]), torch.tensor([5, 6]))
})
hg.out_edges(torch.tensor([1, 2]), etype='follows')

# (tensor([1]), tensor([2]))

**示例 6:**对于无向图,则边是双向的

注意:在dgl的图中,所有边都是有向的,如果要创建无向图,需要创建双向边。

python 复制代码
import dgl
import torch

# 创建一个无向图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])

# 创建双向边以模拟无向图
u_bi = torch.cat([u, v])
v_bi = torch.cat([v, u])

graph = dgl.graph((u_bi, v_bi))
# 简化图
graph = dgl.to_simple(graph)

# 获取节点的出边
src, dst = graph.out_edges([1, 3])

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([1, 1, 3, 3])
# 目标节点: tensor([3, 0, 1, 2])
相关推荐
幽兰的天空18 分钟前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小二·5 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼7 小时前
Python 神经网络项目常用语法
python
一念之坤8 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812279 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder9 小时前
Python入门(12)--数据处理
开发语言·python
LKID体9 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记10 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础