梯度被原地修改,破坏了计算图

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [1, 18, 32, 32]] is at version 2; expected version 0 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient.

出现错误片段

python 复制代码
def forward_slice(self, x_slice, x_channel, color, hp, cc_tsf, ctx_tsf, h_tsf, color_tsf, parameter_aggregation, entropy, entropy_mode):
    h = h_tsf(hp)
    support = h
    if color != None:
        clr = color_tsf(color)
        support = torch.cat([support, clr], dim=1)
    if x_channel != None:
        ch = cc_tsf(x_channel)
        support = torch.cat([support, ch], dim=1)

    x_slice_anchor = torch.zeros_like(x_slice).to(x_slice.device)
    ctx_anchor = ctx_tsf(x_slice_anchor)
    support_anchor = torch.cat([support, ctx_anchor], dim=1)
    parameters = parameter_aggregation(support_anchor)

    if entropy_mode == "gmm":
        mean_anchor,sigma_anchor,weight_anchor = torch.chunk(parameters, 3, dim=1)
        weight_anchor = F.softmax(weight_anchor, dim=1)
    else:
        mean_anchor,sigma_anchor = torch.chunk(parameters, 2, dim=1)
        weight_anchor = None
    probs_anchor = entropy.likelihood(x_slice, mean_anchor, sigma_anchor, weight_anchor)

    probs = torch.zeros_like(x_slice).to(x_slice.device)
    probs[:,:,0::2,0::2] = probs_anchor[:,:,0::2,0::2]
    probs[:,:,1::2,1::2] = probs_anchor[:,:,1::2,1::2]

    x_slice_anchor[:, :, 0::2, 0::2] = x_slice[:,:, 0::2, 0::2]
    x_slice_anchor[:,:, 1::2, 1::2] = x_slice[:,:, 1::2, 1::2]
    ctx_non_anchor = ctx_tsf(x_slice_anchor)
    support_non_anchor = torch.cat([support, ctx_non_anchor], dim=1)
    parameters_non_anchor = parameter_aggregation(support_non_anchor)

    if entropy_mode == "gmm":
        mean_non_anchor,sigma_non_anchor,weight_non_anchor = torch.chunk(parameters_non_anchor, 3, dim=1)
        weight_non_anchor = F.softmax(weight_non_anchor, dim=1)
    else:
        mean_non_anchor,sigma_non_anchor = torch.chunk(parameters_non_anchor, 2, dim=1)
        weight_non_anchor = None
    probs_non_anchor = entropy.likelihood(x_slice, mean_non_anchor, sigma_non_anchor, weight_non_anchor)
    probs[:,:,0::2,1::2] = probs_non_anchor[:,:,0::2,1::2]
    probs[:,:,1::2,0::2] = probs_non_anchor[:,:,1::2,0::2]
    return probs

错误原因:

x_slice_anchor[:, :, 0::2, 0::2] = x_slice[:,:, 0::2, 0::2]

x_slice_anchor[:,:, 1::2, 1::2] = x_slice[:,:, 1::2, 1::2]

这一步对x_slice_anchor进行了修改,但是x_slice_anchor在前面已经用到过,其已经在计算图中,虽然在数值上仍然等于0,但是对其修改会破坏原有的计算图,导致上述错误。

解决办法是新开一个tensor用来存储x_slice的对应位置参数。

所以在修改一个变量的时候,一定要慎重。

解决代码:

python 复制代码
def forward_slice(self, x_slice, x_channel, color, hp, cc_tsf, ctx_tsf, h_tsf, color_tsf, parameter_aggregation, entropy, entropy_mode):
        h = h_tsf(hp)
        support = h
        if color != None:
            clr = color_tsf(color)
            support = torch.cat([support, clr], dim=1)
        if x_channel != None:
            ch = cc_tsf(x_channel)
            support = torch.cat([support, ch], dim=1)
    
        x_slice_anchor = torch.zeros_like(x_slice).to(x_slice.device)
        ctx_anchor = ctx_tsf(x_slice_anchor)
        support_anchor = torch.cat([support, ctx_anchor], dim=1)
        parameters = parameter_aggregation(support_anchor)

        if entropy_mode == "gmm":
            mean_anchor,sigma_anchor,weight_anchor = torch.chunk(parameters, 3, dim=1)
            weight_anchor = F.softmax(weight_anchor, dim=1)
        else:
            mean_anchor,sigma_anchor = torch.chunk(parameters, 2, dim=1)
            weight_anchor = None
        probs_anchor = entropy.likelihood(x_slice, mean_anchor, sigma_anchor, weight_anchor)

		# 开了一个新的tensor用来存储其中的变量,既能保证原有的计算图不被破坏,又能保证数值传递正确,梯度传递正确
        probs = torch.zeros_like(x_slice).to(x_slice.device)
        probs[:,:,0::2,0::2] = probs_anchor[:,:,0::2,0::2]
        probs[:,:,1::2,1::2] = probs_anchor[:,:,1::2,1::2]

        anchor = torch.zeros_like(x_slice).to(x_slice.device)
        anchor[:, :, 0::2, 0::2] = x_slice[:,:, 0::2, 0::2]
        anchor[:,:, 1::2, 1::2] = x_slice[:,:, 1::2, 1::2]
        ctx_non_anchor = ctx_tsf(anchor)
        support_non_anchor = torch.cat([support, ctx_non_anchor], dim=1)
        parameters_non_anchor = parameter_aggregation(support_non_anchor)

        if entropy_mode == "gmm":
            mean_non_anchor,sigma_non_anchor,weight_non_anchor = torch.chunk(parameters_non_anchor, 3, dim=1)
            weight_non_anchor = F.softmax(weight_non_anchor, dim=1)
        else:
            mean_non_anchor,sigma_non_anchor = torch.chunk(parameters_non_anchor, 2, dim=1)
            weight_non_anchor = None
        probs_non_anchor = entropy.likelihood(x_slice, mean_non_anchor, sigma_non_anchor, weight_non_anchor)
        probs[:,:,0::2,1::2] = probs_non_anchor[:,:,0::2,1::2]
        probs[:,:,1::2,0::2] = probs_non_anchor[:,:,1::2,0::2]
        return probs
相关推荐
uesowys几秒前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_5678几秒前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能41 分钟前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习